
TORCHRL: A DATA-DRIVEN DECISION-MAKING
LIBRARY FOR PYTORCH

Albert Bou
Universitat Pompeu Fabra, Acellera
albert.bou@upf.edu

Matteo Bettini
University of Cambridge
mb2389@cl.cam.ac.uk

Sebastian Dittert
Universitat Pompeu Fabra
sebastian.dittert@upf.edu

Vikash Kumar
Meta AI

Shagun Sodhani
Meta AI

Xiaomeng Yang
Meta AI
yangxm@meta.com

Gianni De Fabritiis
ICREA, Universitat Pompeu Fabra, Acellera
g.defabritiis@gmail.com

Vincent Moens
PyTorch Team, Meta
vincentmoens@gmail.com

ABSTRACT

PyTorch has ascended as a premier machine learning framework, yet it lacks a
native and comprehensive library for decision and control tasks suitable for large
development teams dealing with complex real-world data and environments. To
address this issue, we propose TorchRL, a generalistic control library for PyTorch
that provides well-integrated, yet standalone components. We introduce a new and
flexible PyTorch primitive, the TensorDict, which facilitates streamlined algorithm
development across the many branches of Reinforcement Learning (RL) and
control. We provide a detailed description of the building blocks and an extensive
overview of the library across domains and tasks. Finally, we experimentally
demonstrate its reliability and flexibility and show comparative benchmarks to
demonstrate its computational efficiency. TorchRL fosters long-term support and
is publicly available on GitHub for greater reproducibility and collaboration within
the research community. The code is open-sourced on GitHub.

1 INTRODUCTION

Originally, breakthroughs in AI were powered by custom code tailored for specific machines and
backends. However, with the widespread adoption of AI accelerators like GPUs and TPUs, as well as
user-friendly development frameworks such as PyTorch (Paszke et al., 2019), TensorFlow (Abadi
et al., 2015), and Jax (Bradbury et al., 2018), research and application has moved beyond this point.
In this regard, the field of decision-making is more fragmented than other AI domains, such as
computer vision or natural language processing, where a few libraries have rapidly gained widespread
recognition within their respective research communities. We attribute the slower progress toward
standardization to the dynamic requirements of decision-making algorithms, which create a trade-off
between modularity and component integration.

The current solutions in this field lack the capability to effectively support its wide range of applica-
tions, which include gaming (Mnih et al., 2013; Silver et al., 2016; OpenAI et al., 2019b; Espeholt
et al., 2018) , robotic control (Tobin et al., 2017; OpenAI et al., 2019a), autonomous driving (Aradi,
2022) , finance (Ganesh et al., 2019) , bidding in online advertisement (Zhu & Roy, 2021), cooling
system control (Luo et al., 2022), faster matrix multiplication algorithms (Fawzi et al., 2022) or
chip design (Mirhoseini et al., 2021). Decision-making is also a powerful tool to help train other

1

ar
X

iv
:2

30
6.

00
57

7v
2

 [
cs

.L
G

]
 2

7
N

ov
 2

02
3

https://github.com/pytorch/rl/

Figure 1: TorchRL overview. The left side showcases the key components of the library, demonstrating
the data flow with TensorDict instances passing between modules. On the right side, a code snippet
is provided as a toy example, illustrating the training of DDPG. The script provides users with full
control over the algorithm’s hyperparameters, offering a concise yet comprehensive solution. Still,
replacing a minimal number of components in the script enables a seamless transition to another
similar algorithm, like SAC or REDQ.

models through AutoML solutions (He et al., 2018; Zoph & Le, 2017; Zoph et al., 2018; Baker et al.,
2017; Zhong et al., 2018) or incorporate human feedback in generative model fine-tuning (Christiano
et al., 2017; von Werra et al., 2023; Nakano et al., 2021), and is also used in techniques such as
sim-to-real transfer (Tobin et al., 2017; Peng et al., 2018; Rudin et al., 2022; OpenAI et al., 2019a),
model-based RL (Brunnbauer et al., 2022; Wu et al., 2022; Hansen et al., 2022a;b) or offline data
collection for batched RL and imitation learning (Kalashnikov et al., 2018; Shah et al., 2022). In
addition, decision-making algorithms and training pipelines must often meet challenging scaling
requirements, such as distributed inference (Mnih et al., 2016; Espeholt et al., 2018) or distributed
model execution (Nakano et al., 2021). They must also satisfy imperative deployment demands
when used on hardware like robots or autonomous cars, which often have limited computational
resources and need to operate in real-time. Many libraries are either too high-level and difficult
to repurpose across use cases, or too low-level for non-experts to use practically. Because of this
intricate landscape, a consensus adoption of frameworks within the research community remains
limited (Brockman et al., 2016). We believe that moving forward, the next generation of libraries for
decision-making will need to be easy to use and rely on widespread frameworks while still being
powerful, efficient, scalable, and broadly applicable, to meet the demands of this rapidly evolving
and heterogeneous field. This is the problem that TorchRL addresses.

Training decision-making models involves a sequentially driven algorithmic process, where the
cooperation between framework components is vital for adaptability across different applications. For
example, actors, collectors and replay buffers need to be able to handle various modalities. Imposing
a fixed input/output format would restrict their reusability while eliminating all restrictions would
create significant difficulties in designing adaptable scripts. Consequently, conventional decision-
making libraries must choose between a well-integrated framework with a high-level API or a flexible
framework with basic building blocks of limited scope. The former hinders quick coding and testing
of new ideas, while the latter leads to complex code and a poor user experience. TorchRL effectively
tackles these challenges with a powerful communication class that allows its components to operate
independently while not limiting their scope and at the same time ensuring seamless integration with
each other to flexibly create algorithms.

2

In this paper, we will detail our approach for a truly general decision-making library, based primarily
on module portability, efficient communication and code repurposing. We introduce TensorDict,
a new PyTorch data carrier, which is central to achieving this goal. By adopting this new coding
paradigm, we demonstrate how simple it is to reuse ML scripts and primitives across different tasks or
research domains. Building upon this innovative technical foundation, we explore various independent
components that rely on this abstraction. These components encompass a range of advanced solutions,
including distributed data collectors, cutting-edge models like Decision Transformers, and highly
specialized classes such as an environment API compatible with single and multi-agent problems. We
demonstrate that the current state of the library encompasses diverse categories of decision-making
algorithms, caters to a wide range of applications, performs well on both small-scale machines and
distributed clusters, and strikes a balance in terms of technical requirements that makes it accessible
to practitioners with multiple levels of expertise.

Related work. Currently, there is a vast array of libraries available for reinforcement learning.
Some of these libraries are specifically designed for particular niches, such as Pyqlearning (Accel-
Brain, 2023) and Facebook/ELF (Tian et al., 2017), only support a small number of environments,
like OpenSpiel(Lanctot et al., 2019) and reaver (Ring, 2018), or lack the capability for parallel
environments with distributed learning, such as MushroomRL (D’Eramo et al., 2021). Additionally,
many previously popular libraries are no longer actively maintained, including, KerasRL (Plappert,
2016), rlpyt (Stooke & Abbeel, 2019), ReAgent (Gauci et al., 2018), IntelLabs/coach (Caspi et al.,
2017), Dopamine (Castro et al., 2018), ChainerRL (Fujita et al., 2021), PyTorchRL (Bou et al., 2022),
TFAgents (Guadarrama et al., 2018), and autonomous-learning-library(Nota, 2020). Therefore, for
libraries aspiring to serve as comprehensive tools for decision-making, it is crucial to offer robust
long-term support while also being designed to ensure adaptability to the continuously evolving
landscape of decision-making research.

Among currently popular solutions, there’s a strong trend toward high-level approaches that make it
easier to integrate different parts. This is particularly necessary for tools that have components that
can’t stand alone or rely on limited data carriers and require some extra code to make everything work
smoothly together. Some well-known examples of these tools include Stable-baselines (an Stable-
baselines3, SB3) (Raffin et al., 2021), ElegantRL (Liu et al., 2021), Acme (Hoffman et al., 2020),
DI-engine (engine Contributors, 2021), garage (garage contributors, 2019), Tensorforce (Kuhnle
et al., 2017), and RLlib (Liang et al., 2018). While high-level approaches can be welcoming to
newcomers, they often obscure the inner workings of the code, which may not suit users who seek
greater control over their scripts, and difficult code repurposing. TorchRL leverages its powerful data
carrier to adopt a highly modular design. Our primary goal is to provide well-tested building blocks
that enable practitioners to create adaptable scripts. These building blocks can also be utilized by
high-level tools to cater to users of all experience levels, avoiding the need to reimplement the same
functionalities again. Finally, two additional popular libraries are Tianshou (Weng et al., 2022) and
CleanRL (Huang et al., 2022). Tianshou shares similarities with TorchRL, offering a wide range of
RL algorithms, a relatively versatile data carrier, and modular components. However, its primary
focus is on building RL trainers to simplify problem-solving without extensive domain knowledge,
which we believe can be complementary to our approach. On the other hand, CleanRL provides
efficient single-file implementations of RL algorithms in Torch and JAX, enhancing code clarity. Yet,
it sacrifices component reusability, making scaling challenging due to code duplication.

2 TORCHRL COMPONENTS

TorchRL is made up of separate, self-contained parts. Each of these parts, referred to as components,
handles a specific operation in the overall data workflow. While it’s not always required, these
components usually communicate using a dedicated tool designed to flexibly pass data back and forth,
the TensorDict. The resulting atomicity and modularity of this approach facilitate versatile usage and
a combination of individual components within most machine learning workflows. In this section, we
provide an overview of the key components in the library, which can be used independently or as
foundational elements for constructing decision-making algorithms, as depicted in Figure 1.

3

TensorDict1. Introducing a seamless mode of communication among independent RL algorithmic
components poses a set of challenges, particularly when considering the diversity of method signa-
tures, inputs and outputs. A shared, versatile communication standard is needed in such scenarios
to ensure fluid interactions between modules without imposing constraints on the development of
individual components. We address this problem by adopting a new data carrier for PyTorch named
TensorDict, packaged as a separate open-source lightweight library. This library enables every com-
ponent to be developed independently of the requirements of the classes it potentially communicates
with. As a result, data collectors can be designed without any knowledge of the policy structure, and
replay buffers do not need any information about the data structure that is to be stored within them.
Figure 1 gives an overview of a practical data flow using TensorDict as a communication tool.

A TensorDict is a dictionary-like object that stores tensors(-like) objects. It includes additional
features that optimize its use with PyTorch. One of its notable features is the ability to handle the
batch size (in contrast with the "feature" size), which means that it can be indexed not only by keys
but also by shapes. The adopted convention is that a TensorDict batch size represents the common
leading dimensions of the tensors it contains. In the context of RL, the batch-size can include the
minibatch or time dimension as well as the number of agents, tasks or processes. The shape-key
duality is reflected in TensorDict’s ability to handle both key-based and numerical indexing. For
both, this indexing can be performed along multiple dimensions (through nested tensordicts along the
key-dimensions, and through the multiple tensor dimensions along the shape-dimension).

TensorDict provides a whole stack of extra functionality that naturally follows from these two
basic features. These can roughly be split into shape-based and key-based methods. In the first
bucket, one can find torch.Tensor-like features such as reshaping, (un)sequeezing, stacking,
concatenating, masking or permuting. The latter contains methods that allow to flatten or unflatten
the tensordict structure (to represent a flat structure as a nested one or inversely), renaming or deleting
keys. Other utilities include methods to move a TensorDict from one device to another, point-to-
point communication in distributed settings and many more. The class also offers a set of efficient
storage interfaces through memory-mapped tensors or HDF5 files, allowing to manipulate big data
structures with little effort. More details about TensorDict functionality, as well as benchmarks
against comparable solutions, can be found in Appendix B.

TensorDict enables the design of functions and classes with a generic signature, where we can safely
restrict the input and output to be both TensorDict instances. This comes in handy in countless cases:
a straightforward example is the support that TorchRL provides for different simulator backends
such as Gym (Brockman et al., 2016), IsaacGym (Makoviychuk et al., 2021), DeepMind Control
(Tunyasuvunakool et al., 2020), Brax (Freeman et al., 2021) and others. Each of these libraries has a
dedicated step signature that is unified under the TorchRL EnvBase where the relative method
expects a TensorDict instance as input and writes the data in it in a standardized format. The input
types supported are almost universal, which allows TorchRL’s environments to receive complex
data structures as input, thereby enabling a common API for stateful and stateless environment.
Regarding the outputs, the info dictionary returned by Gym-like environment will is expanded in
the output, making the whole step results readily available in a consistent way across libraries and
environments. In practice, this means that in TorchRL, the same training script can be repurposed
with minimal effort to train environments from various backends and domains.

TensorDict does not only provide clearer code but also comes with some performance improvements
that include better memory management, more efficient (a)synchronous point-to-point communication
in distributed settings and device casting. Finally, the tensordict library also comes with a
dedicated tensordict.nn package that rethinks the way one designs PyTorch models. Various
primitives, such as TensorDictModule and TensorDictSequential allow to design of
complex PyTorch operations in an explicit and programmable way. TensorDict’s nn primitives
are fully compatible with torch.compile through a dedicated symbolic tracer available in the
TensorDict package, making TorchRL itself compatible with the latest features of PyTorch 2.1.

Environment API, wrappers, and transforms. OpenAI Gym (Brockman et al., 2016) has become
the most widely adopted environment interface in RL: its standardization of the environment API
was a major leap forward that enabled research reproducibility. Its simplicity (only two functions are

1Anonymized link to the open-source TensorDict repository: https://anonymous.4open.
science/r/tensordict-D5C0/

4

https://anonymous.4open.science/r/tensordict-D5C0/
https://anonymous.4open.science/r/tensordict-D5C0/

exposed during interaction) drove its success, but it presents several drawbacks, such as a fixed tuple
signature for its step method or its heavy reliance on wrappers (see below).

The TorchRL environment interface aims to maintain the simplicity of Gym while addressing these
drawbacks. As with Gym, only the reset() and step() methods are required to interact with
these objects. Both of these methods rely on TensorDict to facilitate their integration, as discussed
in the TensorDict section and presented Figure 1. TensorDicts enable carrying multidimensional
tensor-like data, allowing batched/vectorized simulation (Freeman et al., 2021; Bettini et al., 2022)
and multidimensional input/output spaces. The native support for batched data shapes and nested
data structures make TorchRL compatible by default with multi-agent and multi-task applications,
where these features are key for a clear environment API.

Consequently, TorchRL is by no means an extension of Gym or any other simulation library, unlike
other libraries that cover one specific simulator but not others. The generic environment API allows to
easily support a multitude of existing simulators: Gym and Gymnasium (Brockman et al., 2016) since
v0.13, DMControl (Tunyasuvunakool et al., 2020), Habitat (Szot et al., 2021), RoboHive (Rob, 2020),
OpenML datasets (Vanschoren et al., 2013), D4RL datasets (Fu et al., 2020), Brax (Freeman et al.,
2021), Isaac (Makoviychuk et al., 2021), Jumanji (Bonnet et al.), and VMAS (Bettini et al., 2022) are
some examples, but the list is constantly growing. Notably, the last four of these are vectorized and
can pass gradients through the simulations, allowing to compute reparameterized trajectories. We
provide some more technical information about the environment API and its usage in Appendix C.

TorchRL draws inspiration from other components of the PyTorch ecosystem (maintainers & con-
tributors, 2016; Paszke et al., 2019) which rely on the concept of transform sequences to modify
module outputs. Significantly, TorchRL’s Transforms, which should be seen as regular nn.Module
instances that can be applied wherever data transformation is required. Transforms are versatile
and can be utilized in various components, including replay buffers, collectors, and even ported
from environment to models, effectively connecting the training process with real-world applications.
Examples include data transformations (e.g. resizing, cropping), target computation (reward-to-go)
or even embedding through foundational models (Nair et al., 2022; Ma et al., 2022). As we show in
the Appendix, transforms offer a way to dynamically manipulate data at least as flexible as wrapping
classes typically used in RL libraries.

Data collectors. TorchRL has dedicated classes for data collection that execute a policy in one or
multiple batched environments and return batches of transition data in TensorDict format. Data
collectors iteratively compute the actions to be executed, pass those to the environments (real or
simulated), and can handle resetting when and where required. These collectors are designed for
ease of use, requiring only one or more environment constructors, a policy module and a target
number of steps. However, developers can also specify the asynchronous or synchronous nature of
data collection, the number of parallel environments, the resource allocation (e.g., GPU, number
of workers) and the data postprocessing, giving them fine control and flexibility over the collection
process. TorchRL offers distributed components that enable data collection at scale by coordinating
multiple workers in a cluster. These components are compatible with various backends like gloo
or NCCL through torch.distributed, and multiple launchers and resource management solutions
including submitit (Incubator, 2021) and Ray (Moritz et al., 2018). As scaling inevitably adds
complexity, the distributed solutions in TorchRL are designed as independent components that
provide the same interface and data control as non-distributed components. This enables practitioners
to work locally on projects with complete independence while also providing an easy way to scale up
to distributed projects by just replacing non-distributed components with distributed counterparts,
which will increase data collection throughput. Crucially, TorchRL distributed dependencies are
optional and not required for non-distributed components.

Replay buffers and datasets. Replay buffers (RBs) are crucial elements of RL that enable agents
to learn from past experiences by storing, processing, and resampling data. However, creating
a flexible RB class that caters to various use cases without duplicating implementations can be
challenging. To overcome this, TorchRL provides a single RB implementation that offers complete
composability. Users can define distinct components for data storage, batch generation, pre-storage
and post-sampling transforms, allowing independent customization of each aspect.

The RB class has a default constructor that creates a buffer with a generic configuration, utilizing
a versatile list storage and a sampler that generates batches uniformly. However, users can also

5

specify the storage to be contiguous in either virtual or physical memory. This format provides
faster performance and can handle data sizes up to terabytes. These features allow the creation
of buffers that can be populated on the fly during training or used with static datasets for offline
RL. TorchRL offers a range of downloadable datasets for this purpose (such as D4RL (Fu et al.,
2020) or OpenML (Vanschoren et al., 2013)). Alternative samplers are also available, including a
sampler without a replacement that ensures all data is presented once before repeating, or a C++
optimized prioritized sampler. RBs can store any Python object in their native form using the default
constructor. Nevertheless, we encourage presenting the data in a TensorDict format, which streamlines
the workflow (see Figure 1) and benefits from TorchRL’s optimized storage, sampling and transform
techniques. TorchRL also integrates a remote replay buffer component to gather data from distributed
workers. This functionality is detailed in Appendix D. .

Modules and models. In RL, the model architectures are distinct not only from those in other
machine learning disciplines but also within RL itself. This creates two interconnected issues: Firstly,
there is considerable architectural variability to contend with. Secondly, the nature of inputs and
outputs for these networks can fluctuate based on the specific environment and algorithm in use.
Thus, both challenges necessitate a flexible and adaptable approach.

TorchRL responds to the first problem by providing RL-dedicated neural network architectures, which
are organically integrated into PyTorch as native nn.Modules. These are available at varying levels
of abstraction, ranging from foundational building blocks like Multilayer Perceptron (MLP), Convolu-
tional Neural Networks (CNN), Long short-term memory (LSTM) modules and Transformer, to com-
prehensive, high-level structures such as ActorCriticOperator or WorldModelWrapper
but also exploration modules like NoisyLinear or Planners like CEMPlanner.

To tackle the second challenge, TorchRL uses specialized TensorDictModule and
TensorDictSequential primitives subclassed from the TensorDict library (see Fig-
ure 6). TensorDictModule wraps PyTorch modules, transforming them into tensordict-
compatible objects for effortless integration into the TorchRL framework. Concurrently,
TensorDictSequential concatenates TensorDictModules, functioning similarly to nn.
Sequential. Importantly, these TensorDict modules maintain full compatibility with torch 2.0,
torch.compile, and functorch. Vectorized maps (vmap) are also well-supported, enabling the ex-
ecution of multiple value networks in a vectorized manner. All instances of TensorDictModule
are simultaneously functional and stateful, permitting parameters to be optionally inputted without
additional transformations. This feature notably facilitates the design of meta-RL algorithms within
the TorchRL library.

Objectives and value estimators. In TorchRL, objective classes are stateful components that track
trainable parameters from torch.nn models and handle loss computation, a crucial step for model
optimization in any machine learning algorithm. These components share a common signature defined
by two main methods: a constructor method that accepts the models and all relevant hyperparameters,
and a forward computation method that takes a TensorDict of collected data samples as input and
returns another TensorDict with one or more loss terms. It is worth noting that, in principle, loss
modules can accommodate any nn.Module and process inputs that are not presented as TensorDict
as it is shown in Appendix E.

This design choice makes objective classes very versatile components, abstracting the implementation
of a vast array of loss functions derived from various families of RL algorithms using a single
template. These include on-policy algorithms like Advantage Actor-Critic (A2C) (Mnih et al., 2016)
or Proximal Policy Optimization (PPO) (Schulman et al., 2017), off-policy algorithms like Deep
Q-Network (DQN) (Mnih et al., 2013), distributional DQN (Bellemare et al., 2017) and subsequent
improvements of these (Hessel et al., 2017), Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2015), Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018a), Soft
Actor-Critic (SAC) (Haarnoja et al., 2018) or Randomized Ensembled Double Q-learning (REDQ)
(Chen et al., 2021b), offline algorithms like Implicit Q-Learning (Kostrikov et al., 2021), Decision
Transformer (Chen et al., 2021a)), and model-based algorithms like Dreamer (Hafner et al., 2019).

Finally, TorchRL also provides a solution for state value estimations, a crucial step in the loss
computation of many RL algorithms that can take various forms. As for the modules, the value esti-
mators are presented both in a functional, explicit way as well as an encapsulated TensorDictModule
class that facilitates their integration in TorchRL-based scripts. These replaceable objects, named

6

ValueEstimators, can be called outside the objective class or dynamically during the objective
forward call, providing a versatile solution to accommodate different forms of loss computation.

3 ECOSYSTEM

Documentation, knowledge-base, engineering. TorchRL has a rich, near-complete documentation:
each public class and function must have a proper set of docstrings. At the time of writing, the
coverage is above 90%, and tested across Linux, MacOs and Windows platforms. All the optional
dependencies (eg, environment backends or loggers) are being tested in dedicated workflows. Com-
patibility with all versions of Gym is guaranteed starting from v0.13, including the latest transition
to Gymnasium. If both libraries are present in the virtual environment, a dedicated set of utilities
can be used to control which backend to pick. Several runtime benchmarks have been put in place
to ensure that our modules keep a high-efficiency standard. The ecosystem also includes datasets,
issues-tracking, model library and code examples. External forums, such as the PyTorch forum, are
monitored for issues related to the library.

Take-up. TorchRL has seen rapid growth since its initial open-sourcing. At the time of writing,
the library has more than 120 collaborators, is close to reaching 1500 stars on GitHub and has been
adopted by many teams of researchers and practitioners.

Applications. TorchRL is a versatile library that prioritizes comprehensive coverage, striving to
address a diverse array of decision-making scenarios. As demonstrated previously, its components
exhibit remarkable adaptability, allowing it to fulfill its objective. Fine-tuned, simple examples of
popular algorithms testify of the library’s versatility. Illustrated through finely-tuned, straightforward
examples of popular algorithms, the library’s versatility becomes evident.

The scope of coverage extends from off-policy model-free RL (eg, DQN (Mnih et al., 2013), Rain-
bow (Hessel et al., 2017), SAC (Haarnoja et al., 2018), DDPG (Lillicrap et al., 2015), TD3 (Fujimoto
et al., 2018b)) to on-policy model-free RL (PPO (Schulman et al., 2017), A2C (Mnih et al., 2016)).
Offline RL, which has garnered significant attention, is also exemplified with algorithms such as
IQL (Tan, 1993) and CQL (Kumar et al., 2020), Decision Transformer (Chen et al., 2021a) and
Online-Decision Transformer (Zheng et al., 2022), which serve as valuable resources to assist users in
developing their own solutions. We ensure compatibility with model-based algorithms through a state-
of-the-art implementation of Dreamer (Hafner et al., 2019), which contrasts with most other libraries
that typically only provide either model-free or model-based algorithms in isolation. The majority
of TorchRL’s components seamlessly integrate with Multi-Agent Reinforcement Learning (MARL)
paradigms, and the library also offers specialized MARL components. The extent of our solution
spectrum can be gauged through the rigorous benchmarking of six MARL algorithms in Appendix H.
The library’s primitives are also fit for training on distributed settings, as our implementation and
results of IMPALA Espeholt et al. (2018) show.

Finally, RL from Human Feedback (RLHF) (Nakano et al., 2021) is also a feature of the library.
Several modules and helper functions make it easy to interact with third party libraries such as
Hugging-Face transformers (Wolf et al., 2020) or datasets (Lhoest et al., 2021) to fine-tune generative
models with little effort. These examples showcase the wide applicability and usefulness of TorchRL
and its underlying components. Notably, TorchRL is currently used by some research groups on
hardware.

4 RESULTS

In this section, we experimentally showcase some of our library’s key features. We focus on demon-
strating code reliability, scalability, flexibility in supporting multiple decision-making paradigms, and
component efficiency. In the repository, we make available all scripts used in this section.

Online single-agent RL. The most common use case covered by decision making libraries in online
RL. We conduct experiments using our components to reproduce well-known results for A2C (Mnih
et al., 2016), PPO (Schulman et al., 2017), DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018b),
and SAC (Haarnoja et al., 2018) algorithms. These experiments are reported in Table 1. In each case,
we closely follow the original implementations (including network architectures, hyperparameters
and number of training steps) and obtain results that match those of their original papers.

7

Table 1: Experimental training of multiple on-policy and off-policy algorithms. We run each training
5 times with different seeds and report the mean final reward and std.

HalfCheetah† Hopper† Walker2D† Ant† Pong‡ Freeway‡ Boxing‡ Breakout‡

A2C 836±964 493±192 381±109 54±20 20.57±0.65 30.58±1.40 88.76±6.45 375.65±47.34
PPO * 2770±821 1703±742 3336±928 2469±606 20.52±0.58 33.31±0.95 98.31±0.93 335.71±46.72
DDPG 10433±357 914±144 1683±761 1169±658 - - - -
TD3 10285±837 2809±618 4409±256 5373±165 - - - -
SAC 11077±323 2963±644 4561±92 3467±654 - - - -
IMPALA - - - - 20.54±0.18 0.0±0.0 99.19±0.54 525.57±105.47

∗ Our implementations compute the Generalized Advantage Estimator (GAE) at every epoch.
† MuJoCo environments v3, trained for 1M steps.
‡ Atari 2600 environment, trained for 40M frames (10M steps) for A2C and PPO and 200M for IMPALA.

Table 2: Experimental training of offline algorithms. We run each training 5 times with different
seeds and report the mean final reward and std.

HalfCheetah† Hopper† HalfCheetah† Hopper† HalfCheetah† Hopper†

DT 4916±30 1048±226 oDT 4968±58 2830±96 IQL 4864±147 1418±131
† D4RL offline RL (medium replay) datasets, trained for 50000 gradient updates.

Our training times, with implementations designed mainly to reproduce established benchmarks,
including the architectures, are similar to those of other libraries when using a modern desktop GPU.
For MuJoCo experiments, on-policy algorithms usually complete in about 1 hour, while off-policy
algorithms typically range from 5 to 7 hours. In the case of Atari experiments, the training time is
approximately 8 hours. Note that TorchRL offers additional options to accelerate training times, as
can be seen for example in Table 5, which we did not use to maintain fidelity with the original works.

Distributed RL. TorchRL’s distributed components enable the replication of scalable methods. As
an illustration, we provide results for the IMPALA (Espeholt et al., 2018) algorithm, which utilizes
distributed data collection and a centralized learner. Our implementation adheres to the original
paper’s specifications, and we have validated it across several Atari environments, as shown also in
Table 1. More details as well as training plots are provided in subsection G.1.

Offline RL. TorchRL also includes support for offline methods. In Table 2, results are available for
implicit Q-Learning (IQL) (Kostrikov et al., 2021), the Decision Transformer (DT) (Chen et al., 2021a)
and the Online Decision Transformer (oDT) (Zheng et al., 2022) on 2 MuJoCo environments, with all
three implemented following their respective original papers. Plots are available in subsection G.2.

Multi-agent. To bootstrap the adoption of TorchRL for multi-agent use cases, we provide imple-
mentations for several state-of-the-art MARL algorithms and benchmark them on three multi-robot
coordination scenarios in the VMAS (Bettini et al., 2022) simulator. The results, reported in Figure 2,
show the correctness of TorchRL’s implementations, matching the results from (Bettini et al., 2022).
In the repository, in addition to making available the scripts used in this evaluation, we provide
examples and tutorials to illustrate how TorchRL can be seamlessly used in MARL contexts. Further
details on MARL experiments and comparisons with other libraries are available in Appendix H.

Vectorized data collection. The philosophy of TorchRL and its core component, TensorDict, enables
seamless compatibility with vectorized (batched) simulators (such as IsaacGym (Makoviychuk et al.,
2021), Brax (Freeman et al., 2021), and VMAS (Bettini et al., 2022)). These vectorized simulators run
parallel environment instances in a batch, leveraging the SIMD paradigm of GPUs to greatly speed
up execution. While this paradigm is becoming popular thanks to advances in hardware, not all RL
libraries are ready to leverage its benefits. For instance, in Table 3 we report a comparison between
TorchRL and RLlib (Liang et al., 2018) showing the collected frames per second as a function of
the number of vectorized environments for the “simple spread” task in the VMAS simulator. The
comparison shows that TorchRL is able to leverage vectorization to greatly increase collected frames.
It serves to illustrate the usage of hardware accelerators in simulators, such as IsaacGym, which is
also covered by the library’s wrappers. The code used to generate the results is publicly available in
the benchmark section of our repository.

8

Table 3: Frames per second as a function of the number of vectorized environments. This evaluation
shows that TorchRL is able to leverage vectorized simulators to increase collected frames. The
experiments were run on 100 steps of the “simple spread” MPE (Lowe et al., 2017) scenario in the
VMAS (Bettini et al., 2022) vectorized simulator.

of vectorized envs 1 3334 6667 10000 13333 16667 20000 23333 26666 30000

TorchRL fps 127 263848 398304 529872 444088 522537 538930 487261 384469 422003
RLlib fps 93 1885 1663 1675 1580 1523 1581 1447 1373 1336

Table 4: Efficiency computing the Generalised Advantage Estimation (GAE) (Schulman et al., 2015).
The data consisted of a batch of 1000 trajectories of 1000 time steps, with a "done" frequency of
0.001, randomly spread across the data.
† Using these implementations requires transforming tensors to Numpy arrays and then transforming the result
back to tensors. Moreover, Numpy and similar backends require moving data from and to GPU which can
substantially impact performance. Those data moves are unaccounted for in this table but can double the
GAE runtime. On the contrary, TorchRL works on PyTorch tensors directly. * A proper usage of Ray’s GAE
implementation would have needed a split of the adjacent trajectories, which we did not do to focus on the
implementation efficiency.

Library Speed (ms) Standalone Meta-RL Adjacent Backend Device

Tianshou† 5.15 - - + namba CPU
SB3† 14.1 - - + numpy CPU
RLLib (Ray)* 9.38 - - - scipy CPU
CleanRL 1.43 - - + Jax GPU
TorchRL-compiled 2.67 + + + PyTorch GPU
TorchRL-vec 1.33 + + + PyTorch GPU

Computational efficiency. To check that our solution does not come at the cost of reduced throughput,
we test two selected functionalities (advantage computation and data collection) against other popular
libraries. These experiments were run on an AWS cluster with a single node (96 CPU cores and 1
A100 GPUs per run). These results are reported in Table 4 and Table 5. Overall, these results show
that our solutions have a comparable if not better throughput than others.

Table 5: Data collection speed with common gym environments across common RL libraries. In each
experiment, 32 workers were used. The scripts are available on TorchRL’s benchmark folder.

Library Breakout-v5 HalfCheetah-v4 Pendulum-v1

Tianshou 1212 4719 5823
RLLib 97 1868 1845
Gymnasium 9289 24388 25910
TorchRL (parallel env) 9092 21742 23363
TorchRL (sync collector) 10394 23527 24530
TorchRL (async collector) 19401 32894 31584

Figure 2: MARL algorithm evaluation in three VMAS multi-robot control tasks. We report the mean
and standard deviation reward over 6 random seeds. Each run consists of 500 iterations of 60, 000
steps each, with an episode length of 100 steps.

9

5 CONCLUSION

We have presented TorchRL, a modular decision-making library with composable, single-
responsibility building pieces that rely on TensorDict for an efficient class-to-class communication
protocol. TorchRL’s design principles are tailored to the dynamic field of decision-making, enabling
the implementation of a wide range of algorithms. We believe TorchRL can be of particular interest
to researchers and developers alike. Its key advantage is that researchers can create or extend existing
classes on their own and seamlessly integrate them with existing scripts without the need to mod-
ify the internal code of the library, allowing for quick prototyping while maintaining a stable and
reliable code base. We believe this feature will also be suited for developers looking to apply an AI
solution to a specific problem. We demonstrate that TorchRL not only benefits from a wide range
of functionalities but is also reliable and exhibits computational efficiency. The library is currently
fully functional, and we are extensively testing it across various scenarios and applications. We look
forward to receiving feedback and further enhancing the library based on the input we receive.

ACKNOWLEDGEMENTS

We express our gratitude to the numerous contributors who have made TorchRL a reality through
their dedicated efforts, whether by directly contributing to the codebase or by providing valuable
feedback and suggestions for its development. A complete list of these individuals can be found
on the TorchRL GitHub page. Furthermore, we extend our appreciation to the PyTorch and Linux
foundations for their support and confidence in this project, as they provide an ecosystem where the
library can thrive (e.g., CI/CD, compute resources and technical support).

10

REFERENCES

Robohive – a unified framework for robot learning. https://sites.google.com/view/
robohive, 2020. URL https://sites.google.com/view/robohive.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Accel-Brain. Reinforcement learning code repository. https://github.com/accel-brain/
accel-brain-code/tree/master/Reinforcement-Learning, 2023.

Szilárd Aradi. Survey of deep reinforcement learning for motion planning of autonomous vehicles.
IEEE Transactions on Intelligent Transportation Systems, 23(2):740–759, 2022. doi: 10.1109/
TITS.2020.3024655.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning, 2017.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. CoRR, abs/1707.06887, 2017. URL http://arxiv.org/abs/1707.06887.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819–840, 2002.

Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. Vmas: A vectorized multi-
agent simulator for collective robot learning. The 16th International Symposium on Distributed
Autonomous Robotic Systems, 2022.

Matteo Bettini, Ajay Shankar, and Amanda Prorok. Heterogeneous multi-robot reinforcement learning.
In Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’23. International Foundation for Autonomous Agents and Multiagent Systems,
2023.

Clément Bonnet, Donal Byrne, Victor Le, Laurence Midgley, Daniel Luo, Cemlyn Waters, Sasha
Abramowitz, Edan Toledo, Cyprien Courtot, Matthew Morris, et al. Jumanji: Industry-driven
hardwareaccelerated rl environments, 2022. URL https://github. com/instadeepai/jumanji.

Albert Bou, Sebastian Dittert, and Gianni De Fabritiis. Efficient reinforcement learning experimenta-
tion in pytorch, 2022. URL https://openreview.net/forum?id=9WJ-fT_92Hp.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Axel Brunnbauer, Luigi Berducci, Andreas Brandstätter, Mathias Lechner, Ramin Hasani, Daniela
Rus, and Radu Grosu. Latent imagination facilitates zero-shot transfer in autonomous racing, 2022.

Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. Reinforcement learning coach, December
2017. URL https://doi.org/10.5281/zenodo.1134899.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

11

https://sites.google.com/view/robohive
https://sites.google.com/view/robohive
https://sites.google.com/view/robohive
https://www.tensorflow.org/
https://github.com/accel-brain/accel-brain-code/tree/master/Reinforcement-Learning
https://github.com/accel-brain/accel-brain-code/tree/master/Reinforcement-Learning
http://arxiv.org/abs/1707.06887
https://openreview.net/forum?id=9WJ-fT_92Hp
http://github.com/google/jax
https://doi.org/10.5281/zenodo.1134899
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021a.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021b.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Mushroomrl:
Simplifying reinforcement learning research. Journal of Machine Learning Research, 22(131):
1–5, 2021. URL http://jmlr.org/papers/v22/18-056.html.

DI engine Contributors. DI-engine: OpenDILab decision intelligence engine. https://github.
com/opendilab/DI-engine, 2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures, 2018.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mo-
hammadamin Barekatain, Alexander Novikov, Francisco J R. Ruiz, Julian Schrittwieser, Grze-
gorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster ma-
trix multiplication algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022.
ISSN 1476-4687. doi: 10.1038/s41586-022-05172-4. URL https://doi.org/10.1038/
s41586-022-05172-4.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018a.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018b.

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. Chainerrl: A deep
reinforcement learning library. Journal of Machine Learning Research, 22(77):1–14, 2021. URL
http://jmlr.org/papers/v22/20-376.html.

Sumitra Ganesh, Nelson Vadori, Mengda Xu, Hua Zheng, Prashant Reddy, and Manuela Veloso.
Reinforcement learning for market making in a multi-agent dealer market, 2019.

The garage contributors. Garage: A toolkit for reproducible reinforcement learning research. https:
//github.com/rlworkgroup/garage, 2019.

Jason Gauci, Edoardo Conti, Yitao Liang, Kittipat Virochsiri, Zhengxing Chen, Yuchen He, Zachary
Kaden, Vivek Narayanan, and Xiaohui Ye. Horizon: Facebook’s open source applied reinforcement
learning platform. arXiv preprint arXiv:1811.00260, 2018.

12

http://jmlr.org/papers/v22/18-056.html
https://github.com/opendilab/DI-engine
https://github.com/opendilab/DI-engine
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1038/s41586-022-05172-4
http://github.com/google/brax
http://github.com/google/brax
http://jmlr.org/papers/v22/20-376.html
https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage

Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam Fishman,
Ke Wang, Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano Sbaiz, Jamie Smith, Gábor
Bartók, Jesse Berent, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-Agents: A library
for reinforcement learning in tensorflow. https://github.com/tensorflow/agents,
2018. URL https://github.com/tensorflow/agents. [Online; accessed 25-June-
2019].

T. Haarnoja, Aurick Zhou, Kristian Hartikainen, G. Tucker, Sehoon Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, and S. Levine. Soft actor-critic algorithms and applications. ArXiv,
abs/1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, and Aravind Rajeswaran.
Modem: Accelerating visual model-based reinforcement learning with demonstrations, 2022a.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control, 2022b.

Yihui He, Ji tianshou, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning, 2017.

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,
Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard
Hussenot, Robert Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino
Vieillard, Seyed Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson,
Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar
Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando
de Freitas. Acme: A research framework for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2020. URL https://arxiv.org/abs/2006.00979.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Facebook Incubator. Submitit. https://github.com/facebookincubator/submitit,
2021. [GitHub repository].

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt:
Scalable deep reinforcement learning for vision-based robotic manipulation, 2018.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. Tensorforce: a tensorflow li-
brary for applied reinforcement learning. Web page, 2017. URL https://github.com/
tensorforce/tensorforce.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning, 2020.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
A novel reinforcement learning environment. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 4501–4510, 2020.

13

https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://arxiv.org/abs/2006.00979
http://jmlr.org/papers/v23/21-1342.html
https://github.com/facebookincubator/submitit
https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian
Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis. Open-
Spiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453, 2019. URL
http://arxiv.org/abs/1908.09453.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen
Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,
Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor
Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community library
for natural language processing. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pp. 175–184, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics. URL https:
//aclanthology.org/2021.emnlp-demo.21.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning, pp. 3053–3062. PMLR, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Xiao-Yang Liu, Zechu Li, Ming Zhu, Zhaoran Wang, and Jiahao Zheng. ElegantRL: Massively
parallel framework for cloud-native deep reinforcement learning. https://github.com/
AI4Finance-Foundation/ElegantRL, 2021.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Jerry Luo, Cosmin Paduraru, Octavian Voicu, Yuri Chervonyi, Scott Munns, Jerry Li, Crystal Qian,
Praneet Dutta, Jared Quincy Davis, Ningjia Wu, Xingwei Yang, Chu-Ming Chang, Ted Li, Rob
Rose, Mingyan Fan, Hootan Nakhost, Tingtiansho Liu, Brian Kirkman, Frank Altamura, Lee
Ctianshoe, Patrick Tonker, Joel Gouker, Dave Uden, Warren Buddy Bryan, Jason Law, Deeni
Fatiha, Neil Satra, Juliet Rothenberg, Mandeep Waraich, Molly Cartiansho, Satish Tallapaka, Sims
Witherspoon, David Parish, Peter Dolan, Chenyu Zhao, and Daniel J. Mankowitz. Controlling
commercial cooling systems using reinforcement learning, 2022.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:
//github.com/pytorch/vision, 2016.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
performance gpu-based physics simulation for robot learning, 2021.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong,
Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V Le, James Laudon, Richard Ho, Roger
Carpenter, and Jeff Dean. A graph placement methodology for fast chip design. Nature, 594
(7862):207–212, 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03544-w. URL https:
//doi.org/10.1038/s41586-021-03544-w.

14

http://arxiv.org/abs/1908.09453
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1038/s41586-021-03544-w

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework
for emerging {AI} applications. In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), pp. 561–577, 2018.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation, 2022.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback. CoRR, abs/2112.09332, 2021. URL
https://arxiv.org/abs/2112.09332.

Chris Nota. The autonomous learning library. https://github.com/cpnota/
autonomous-learning-library, 2020.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand, 2019a.

OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dȩbiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with Large Scale Deep Reinforcement Learning.
2019b. URL https://arxiv.org/abs/1912.06680.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer
of robotic control with dynamics randomization. In 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, may 2018. doi: 10.1109/icra.2018.8460528. URL
https://doi.org/10.1109%2Ficra.2018.8460528.

Matthias Plappert. keras-rl. https://github.com/keras-rl/keras-rl, 2016.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

15

https://arxiv.org/abs/2112.09332
https://github.com/cpnota/autonomous-learning-library
https://github.com/cpnota/autonomous-learning-library
https://arxiv.org/abs/1912.06680
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109%2Ficra.2018.8460528
https://github.com/keras-rl/keras-rl
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

Roman Ring. Reaver: Modular deep reinforcement learning framework. https://github.com/
inoryy/reaver, 2018.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning, 2022.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 2186–2188, 2019.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Dhruv Shah, Arjun Bhorkar, Hrish Leen, Ilya Kostrikov, Nick Rhinehart, and Sergey Levine. Offtiane
reinforcement learning for visual navigation, 2022.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, 2016. ISSN 1476-4687. doi:
10.1038/nature16961. URL https://doi.org/10.1038/nature16961.

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch. CoRR, abs/1909.01500, 2019. URL http://arxiv.org/abs/1909.01500.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087, 2018.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus,
Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun,
Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants to rearrange
their habitat. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Yuandong Tian, Qucheng Gong, Wenling Shang, Yuxin Wu, and C. Lawrence Zitnick. Elf: An
extensive, lightweight and flexible research platform for real-time strategy games. Advances in
Neural Information Processing Systems (NIPS), 2017.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world, 2017.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https://doi.
org/10.1016/j.simpa.2020.100022. URL https://www.sciencedirect.com/science/
article/pii/S2665963820300099.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198.
URL http://doi.acm.org/10.1145/2641190.264119.

16

https://github.com/inoryy/reaver
https://github.com/inoryy/reaver
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1909.01500
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
http://doi.acm.org/10.1145/2641190.264119

Leandro von Werra, Jonathan Tow, reciprocated, Shahbuland Matiana, Alex Havrilla, cat state, Louis
Castricato, Alan, Duy V. Phung, Ayush Thakur, Alexey Bukhtiyarov, aaronrmm, Fabrizio Milo,
Daniel, Daniel King, Dong Shin, Ethan Kim, Justin Wei, Manuel Romero, Nicky Pochinkov, Omar
Sanseviero, Reshinth Adithyan, Sherman Siu, Thomas Simonini, Vladimir Blagojevic, Xu Song,
Zack Witten, alexandremuzio, and crumb. CarperAI/trlx: v0.6.0: LLaMa (Alpaca), Benchmark Util,
T5 ILQL, Tests, March 2023. URL https://doi.org/10.5281/zenodo.7790115.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal of
Machine Learning Research, 23(267):1–6, 2022. URL http://jmlr.org/papers/v23/
21-1127.html.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Daydreamer:
World models for physical robot learning, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer, 2022.

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-tianshou Liu. Practical block-wise neural
network architecture generation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2423–2432, 2018.

Zheqing Zhu and Benjamin Van Roy. Deep exploration for recommendation systems, 2021.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition, 2018.

17

https://doi.org/10.5281/zenodo.7790115
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6

APPENDIX

A OPENSOURCE REPOSITORIES

TorchRL library and an TensorDict opensource code can be found at the following locations:

• TorchRL: https://anonymous.4open.science/r/rl-CE0E/
• TensorDict: https://anonymous.4open.science/r/tensordict-D5C0/

B TENSORDICT FUNCTIONALITY

TensorDict’s aim is to abstract away functional details of PyTorch workflows, enabling scripts to be
more easily reused across different tasks, architectures, or implementation details. While primarily
a tool for convenience, TensorDict can also provide notable computational benefits for specific
operations.

B.1 TENSORDICTBASE AND SUBCLASSES

The parent class of any TensorDict class is TensorDictBase. This abstract class lists the common
operations of all its subclasses and also implements a few of them. Indeed, some generic methods are
implemented once for all subclasses, such as tensordict.apply, as the output will always be a
TensorDict instance. Others, such as __getitem__ have a behavior that is intrinsically linked
to their specifics.

The following subclasses are available:

• TensorDict: this is the most common class and usually the only one users will need to interact
with.

• LazyStackedTensorDict: This class is the result of calling torch.stack on a list of
TensorDictBase subclass instances. The resulting object stores each instance independently
and stacks the items only when queried through __getitem__, __setitem__, get, set
or similar. Heterogeneous TensorDict instances can be stacked together: in that case, get may
fail to stack the tensors (if one is missing from one tensordict instance or if the shapes do not
match). However, this class can still be used to carry data from object to object or worker to
worker, even if the data is heterogeneous. The original tensordicts can be recovered simply via
indexing of the lazy stack: torch.stack(list_of_tds, 0)[0]will return the first element
of list_of_tds.

• PersitentTensorDict: implements a TensorDict class with persistent storage. At the time of
writing, only the H5 backend is implemented. This interface is currently being used to integrate
massive datasets within TorchRL for offline RL and imitation learning.

• _CustomOpTensorDict: This abstract class is the parent of other classes that implement lazy
operations. This is used to temporarily interact with a TensorDict on which a zero-copy reshape
operation is to be executed. Any in-place operations on these instances will affect the parent
tensordict as well. For instance, tensordict.permute(0, 1).set("a", tensor) will
set a new key in the parent tensordict as well.

Performance Through a convenient and intuitive API, tensordict offers some out-of-the-box op-
timizations that would otherwise be cumbersome to achieve and, we believe, can have a positive
impact beyond RL usage. For instance, TensorDict makes it easy to store large datasets in contigu-
ous physical memory through a PyTorch interface with NumPy’s memory-mapped arrays named
MemmapTensor, available in the tensordict library. Unlike regular PyTorch datasets, TensorDict
offers the possibility to index multiple items at a time and make them immediately available in
memory in a contiguous manner: by reducing the I/O overhead associated with reading single files
(which we preprocess and store in a memory-mapped array on disk), one can read, cast to GPU and
preprocess multiple files all-at-once. Not only can we amortize the time of reading independent
files, but we can also leverage this to apply transforms on batches of data instead of one item at
a time. These batched transforms on device are much faster to execute than their multiprocessed

18

https://anonymous.4open.science/r/rl-CE0E/
https://anonymous.4open.science/r/tensordict-D5C0/

Figure 3: Dataloading speed with TensorDict.

@tensorclass
class MyClass:

image: torch.Tensor
label: torch.Tensor

data = MyClass(
image=torch.zeros(100, 32, 32, 3, dtype=torch.uint8),
label=torch.randint(1000, (100,)),
batch_size=[100]

)

a MyData instance with floating point content
data_float = data.apply(lambda x: x.float())
a MyData instance on cuda
data_cuda = data.to("cuda")
the first 10 elements of the original MyData instance
data_idx = data[:10]

Figure 4: A @tensorclass example.

counterparts. Figure 3 shows the collection speed over ImageNet with batches of 128 images and
per-image random transformations including cropping and flipping. The workflow used to achieve
this speedup is available in the repository documentation.

tensorclass TensorDict also offers a @tensorclass decorator aimed at working as the
@dataclass decorator: it allows for the creation of specialized dataclasses with all the fea-
tures of TensorDict: shape vs key (attribute) dimension, device, tensor operations and more.
@tensorclass instances natively support any TensorDict operation. Figure 4 shows a few exam-
ples of @tensorclass usage.

B.2 TENSORDICT.NN: MODULES AND FUNCTIONAL API

The second pane of the tensordict library is its module interface, on which TorchRL heavily relies.
tensordict.nn aims to address two core limitations of torch.nn. First, torch.nn offers
a Module class which encourages users to create new components through inheritance. However,
in many cases, this level of control in module construction is unnecessary and can even hinder

19

class MLP(nn.Module):
def __init__(self):

super().__init__()
self.layer1 = nn.Linear(3, 4)
self.layer2 = nn.Linear(4, 2)
self.activation = torch.relu

def forward(self, x):
y = self.activation(self.linear1(x))
return self.linear2(y)

Figure 5: Programmable module design with TensorDictModule

from tensordict.nn import TensorDictSequential as Seq, TensorDictModule
as Mod

module = Seq(
Mod(nn.Linear(3, 4), in_keys=[’input’], out_keys=[’hidden0’]),
Mod(torch.relu, in_keys=[’hidden0’], out_keys=[’hidden1’]),
Mod(nn.Linear(4, 2), in_keys=[’hidden1’], out_keys=[’output’]),

)

Figure 6: Programmable module design with TensorDictModule

modularity. For example, consider the coding of a simple multi-layered perceptron, as depicted in
figure 5, which is commonly encountered.

Such a definition of a dedicated class lacks flexibility. One solution commonly adopted to control the
network hyperparameters (number of layers, the activation function, or layer width) is to pass them
as inputs to the constructor and group the layers together within a nn.Sequential instance. This
solution works fine as long as the sequence is a simple chain of operations on a single tensor. As soon
as some operations need to be skipped, or when modules output multiple tensors, nn.Sequential
is not suited anymore and the operations must be explicitly written within the forward method,
which sets the computational graph once and for all. The TensorDictModule class overcomes
this limitation and provides a fully programmable module design API, as shown in figure 6.

Formulating a module in this way brings all the flexibility we need to address the shortcomings
exposed above: it is easy to programmatically design a new model architecture at runtime for any
kind of model. Selecting subgraphs is easy and can be achieved via regular indexing of the module or
more advanced sub-graph selection. In the following example, a call to select_subsequence
will output a new TensorDictSequential where the modules are restricted only to those whose
operations depend on the "hidden1" key:

sub_module = module.select_subsequence(in_keys=["hidden1"])

To further back our claim that such model construction is beneficial both in terms of clarity and
modularity, let us take the example of writing a residual connection with tensordict.nn:

block = Seq(
Mod(nn.Linear(128, 128), in_keys=[’x’], out_keys=[’intermediate’]),
Mod(torch.relu, in_keys=[’intermediate’], out_keys=[’intermediate’]),
Mod(nn.Linear(128, 128), in_keys=[’intermediate’], out_keys=[’

intermediate’]),
)
residual = Seq(

block,
Mod(lambda x, z: x+z, in_keys=[’x’, ’intermediate’], out_keys=[’x’])

)

20

For clarity, we have separated the backbone and the residual connection, but these could be grouped
under the same TensorDictSequential instance. Nevertheless, select_subsequence
will go through these various levels of nesting if ever called.

Functional usage Functional usage of these modules is a cornerstone in TorchRL as it underpins
efficient calls to the same module with different sets of parameters for off-policy algorithms where
multiple critics are executed simultaneously or in situations where target parameters are needed.
tensordict.nn provides a make_functional function that transforms any torch.nn mod-
ule in a functional module that accepts an optional params (keyword-)argument. This function will
return the parameters and buffers in a TensorDict instance whose nested structure mimics the one
of the originating module (unlike Module.state_dict() which returns them in a flat structure).

Using these functionalized modules is straightforward. For instance, we can zero all the parameters
of a module and call it on some data:

params = make_functional(module)
params_zero = params.clone().zero_()
module(tensordict, params=params_zero)

This allows us to group the calls to multiple critics in a vectorized fashion. In the following example,
we stack the parameters of two critic networks and call the module with this stack using torch.
vmap, the PyTorch vectorized-map function:

make_functional(critic)
vmap_critic = vmap(critic, (None, 0))
data = vmap_critic(

data,
torch.stack([params_critic0, params_critic1], 0))

We refer to the torch.vmap documentation for further information on this feature. Similarly,
calling the same module with trainable or target parameters can be done via a functional call to it.

Performance The read and write operations executed during the unfolding of a
TensorDictSequential can potentially impact the execution speed of the underlying
model. To address this concern, we offer a dedicated symbolic_trace function that simplifies the
operation graph to its essential elements. This function generates a module that is fully compatible
with torch.compile, resulting in faster execution. By combining these solutions, we can achieve
module performance that is on par, if not better, than their regular nn.Module counterparts.

Using TensorDict modules in tensordict-free code bases Because the library’s goal is to be as min-
imally restrictive as possible, we also provide the possibility of executing TensorDict-based modules
without explicitly requiring any interaction with TensorDict: the tensordict.nn.dispatch
decorator allows to interact with any module from the TensorDict ecosystem with pure tensors:

module = TensorDictModule(
lambda x: x+1, x-2,
in_keys=["x"], out_keys=["y", "z"])

y, z = module(x = torch.randn(3))

TensorDictModule and associated classes also provide a select_out_keys method that
allows to hide some specific keys of a graph to minimize the output. When used in conjunction with
@dispatch, this enables a much clearer usage when multiple intermediate keys are present.

B.3 TENSORDICT VS OTHER TENSOR CARRIERS

TensorDict is one of the many data carriers in RL and other machine learning fields. To avoid
overfitting to a single comparison, we provide a generic comparison of TensorDict in the RL ecosystem
followed by a comparison of TensorDict with PyTrees.

21

B.3.1 TENSORDICT VS OTHER RL DATA CARRIERS

Examples of existing data carriers in RL are Tianshou’s Batch, RLLib’s TensorDict, or Salina’s
Workspace. The goal of each of these classes is somewhat similar, i.e., abstracting away the precise
content of a module output to focus on the orchestration of the various components of the library.

First and foremost, TensorDict isn’t focused on RL specifically, while the others are. We did
not restrict its content to be some derivation of a (observation, next_observation,
reward, done, action) tuple. It can store any numerical data, e.g., structures without reward
for imitation learning, or with deeply nested data structures for Monte Carlo Tree Search algorithms.
This allows TorchRL to cover a much broader range of algorithms like Offline RL, imitation learning,
optimal control and others, where other solutions may struggle given their content limitations.

Second, TensorDict behaves like a tensor: it supports shape manipulation, casting, copying, etc. All
these operations are implemented in such a way that in many places, tensors and TensorDicts are
interchangeable. This allows us to build policies that return TensorDicts and not tensors for compound
actors for instance. It also allows for a certain implicit recursivity in TensorDict functionalities: for
many operations, applying a transformation to all leaves in the TensorDict tree just boils down to
calling that operation over all fields of the TensorDict, recursively.

B.3.2 TENSORDICT VS PYTREE

TensoDict can also be compared to PyTree, a concept shared by PyTorch and Jax that allows to cast
operations to any level of deeply nested data structures. Yet, TensorDict isn’t based on PyTree. There
are several things to take into consideration to understand why:

• Using PyTree implies decomposing the TensorDict, applying the function to its tensors (leaves),
and recomposing it. This introduces some overhead, as metadata need to be saved, and the class
reinstantiated which does not come for free. ‘TensorDict.apply‘ can reduce that overhead by
knowing in advance what to do with the op that is applied to it.

• TensorDict operations are implemented in a way that makes the results more directly useful to the
user. Splitting (or unbinding) operations are a good example of this: using a regular PyTree call over
a nested dictionary would result in nested dictionaries of tuples of tensors. Using ‘TensorDict.split‘
will result in tuples of TensorDicts, which matches the ‘torch.split‘ signature. This makes this
operation more “intuitive” than the PyTree version and is more directly useful to the user. Of course,
some PyTree implementations offers tools to invert the structure order. Nevertheless, we believe
having these features built-in to be useful.

• TensorDicts carry important metadata, like "shape" (i.e., batch-size) and "device", whereas generic
structures that are compatible with PyTree (such as dict and lists) do not carry this information. In a
sense, it is less generic than a dictionary, but for its own good. Metadata allow us to leverage the
concept of batch-size for instance, and separate it from the "feature-size". Among other advantages,
this greatly facilitates vmap-ing over a TensorDict, as we know what shape can be vmaped over
in advance. For example, TensorDict used in TorchRL have by convention the "time" dimension
positioned last. If we need to vmap over it, we can call vamp(op, (-1,))(data). This -1 is
generic (i.e., reusable across use cases, independently of the number of dimensions), and does not
depend on the batch size. This is anecdotal example would be harder to code using PyTrees.

• We think that using PyTree requires more knowledge and practice than TensorDict. Sugar code like
data.cuda() would be harder to code with PyTree. Retrieving the resulting metadata (through
data.device) wouldn’t be possible either, since PyTree does not carry metadata unless a special
class is written.

• TensorDicts come with some handy features that would not be easy to come up with using PyTrees:
they can be locked to avoid unwanted changes and they can be used as context managers for
some operations (like functional calls over modules, or temporarily unlocking a tensordict using
with data.unlock_():...).

• Finally, note that TensorDict is registered within PyTree in PyTorch, such that anything PyTree can
do, TensorDict can do too.

22

B.4 TENSORDICT OVERHEAD MEASUREMENT

We measured TensorDict overhead for the lastest release at the time of writing the manuscript (v0.2.1)
against other existing solutions.

B.4.1 TENSORDICT VS PYTREE

TensorDict has some similarities with the PyTree data-structure presented in Jax Bradbury et al. (2018)
or in PyTorch Paszke et al. (2019), as it can dispatch operations over a set of leaves. To measure
the worst case overhead introduced by TensorDict (which handles meta-data such as batch-size and
carrier device when executing these operations), we executed the same operations using PyTree and
TensorDict over a highly nested (100 levels) dictionary, where each leaf was a scalar tensor. We
consider this level of nesting to be above most of the usual use cases of TensorDict (in a typical RL
setting, only a couple of levels are needed for data representation and a tenth or so for parameter
representation with complex models). We tested the time it takes to increase the value of each leaf
by 1.0 or to transfer all tensors from CPU to a GPU device. Additionally, we also assessed the time
required to split, chunk, and unbind a TensorDict along its batch-size compared to the equivalent
PyTree operation. We ran these operations 1000 times over 16 different runs and report the 95%
confidence interval of the expected value.

Results The value increment took 0.916 ms (0.91531-0.91628) with PyTree, compared with 1.0555
ms (1.05495 - 1.05608) for TensorDict, which constitutes a 115% runtime increment. Casting to
CUDA had a similar impact, with PyTree running at 1.181 ms (1.16242 - 1.19960) and TensorDict at
1.302 ms (1.30065 - 1.30242), a 10% runtime increment. For batch-size operations, the overhead
was also worse for TensorDict: split took 1.015 ms (1.01436 - 1.01530) against 4.254 ms (4.23771 -
4.26700), chunk took 0.801 ms (0.80027 - 0.80084) vs 2.155 ms (2.14920 - 2.16060) and unbind
1.418 ms (1.417299 - 1.41778) vs 3.836 ms (3.834133 - 3.83615) for PyTree and TensorDict in each
case. Recall that those operations with PyTree returned nested dictionaries of tuples rather than tuples
of dictionaries and that TensorDict had to re-compute the batch-size of each element of the batch:
these differences explain the overhead observed. Nevertheless, we will aim at addressing these issues
in the next TensorDict release as there is significant room for improvement. Our plan is detailed on
the discussion page of the repository.

B.4.2 TENSORDICT FUNCTIONAL CALLS VS FUNCTORCH

TensorDict offers a simple API to execute functional calls over a specific PyTorch module. Unlike
torch.func.functinoal_call, TensorDict allows for functional calls over any method of
the module, and its nested representation makes it possible to execute functional calls over sub-
modules without effort. For the sake of completeness, we also compared how much a functional call
over a narrow (16 cells instead of 2048) but deep torch.nn.Transformer would be impacted
by a switch to TensorDict. The runtime for functorch was of 8.423 ms (8.38470 - 8.46124) against
10.26071 ms (10.25635 - 10.26500) for TensorDict. This reduced speed should be put in perspective
with the depth of the model and reduced runtime for the algebraic operations. Note that TensorDict
functional calls are currently in their first version and will be refactored soon to make them easier to
use and more broadly applicable (eg, in distributed and graph settings). We have already developed
a prototype of this feature which will be included in the next release. After this refactoring, early
experiments have already confirmed that the runtime will be at par with existing functional calls in
functorch.

C ENVIRONMENT API

To bind input/output data to a specific domain, TorchRL uses TensorSpec, a custom version of the
feature spaces found in other environment libraries. This class is specially tailored for PyTorch: its
instances can be moved from device to device, reshaped, or stacked at will, as the tensors would be.
TensorDict is naturally blended within TensorSpec through a CompositeSpec primitive which
is a metadata version of TensorDict. The following example shows the equivalence between these
two classes:

>>> from torchrl.data import UnboundedContinuousTensorSpec, \ ...

23

CompositeSpec
>>> spec = CompositeSpec(
... obs=UnboundedContinuousTensorSpec(shape=(3, 4)),
... shape=(3,),
... device=’cpu’
)
>>> print(spec.rand())
TensorDict(

fields={
obs: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.

float32, is_shared=False)},
batch_size=torch.Size([3]),
device=cpu,
is_shared=False)

TensorSpec comes with multiple dedicated methods to run common checks and operations, such
as spec.is_in which checks if a tensor belongs to the spec’s domain, spec.project which
maps a tensor onto its L1 closest data point within a spec’s domain or spec.encode which creates
a tensor from a NumPy array. Other dedicated operations such as conversions from categorical
encoding to one-hot are also supported.

Specs also support indexing and stacking, and as for TensorDict, heterogeneous CompositeSpec
instances can lazily be stacked together for better integration in multitask or multiagent frameworks.

Using these specs greatly empowers the library and is a key element of many of the performance
optimizations in TorchRL. For instance, using the TensorSpecs allows us to preallocate buffers
in shared memory or on GPU to maximize the throughput during parallel data collection, without
executing the environment operations a single time. For real-world deployment of TorchRL’s solutions,
these tools are essential as they allow us to run algorithms on fake data defined by the environment
specs, checking that there is no device or shape mismatch between model and environment, without
requiring a single data collection on hardware.

Designing environments in TorchRL To encode a new environment, developers only need to
implement the internal _reset() and _step() methods and provide the input and output domains
through the specs for grounding the data. TorchRL provides a set of safety checks grouped under
the torchrl.envs.utils.check_env_specs which should be run before executing an
environment for the first time. This optional validation step offloads many checks that would
otherwise be executed at runtime to a single initial function call, thereby reducing the footprint of
these checks.

D REPLAY BUFFERS

TorchRL’s replay buffers are fully composable: although they come with “batteries included”,
requiring a minimal effort to be built, they also support many customizations such as storage type,
sampling strategy or data transforms. We provide dedicated tutorials and documentation on their
usage in the library. The main features can be listed as follows:

• Various Storage types are proposed. We provide interfaces with regular lists, or contiguous physical
or virtual memory storages through MemmapTensor and torch. Tensor classes respectively.

• At the time of writing, the Samplers include a generic circular sampler, a sampler without repetition
, and an efficient, C++ based prioritized sampler.

• One can also pass Transforms which are notably identical to those used in conjunction with
TorchRL’s environments. This makes it easy to recycle a data transform pipeline used during
collection to one used offline to train from a static dataset made of untransformed data. It also
allows us to store data more efficiently: as an example, consider the cost of saving images in uint8
format against saving transformed images in floating point numbers. Using the former reduces
the memory footprint of the buffer, allowing it to store more data and access it faster. Because
the data is stored contiguously and the transforms are applied on-device, the reduction in memory
footprint comes at a little extra computational cost. One could also consider the usage of transforms

24

from torchrl.objectives import DQNLoss
from torchrl.data import OneHotDiscreteTensorSpec
from torch import nn
import torch

n_obs = 3
n_action = 4

action_spec = OneHotDiscreteTensorSpec(n_action)
value_network = nn.Linear(n_obs, n_action) # a simple value model
dqn_loss = DQNLoss(value_network, action_space=action_spec)

define data
observation = torch.randn(n_obs)
next_observation = torch.randn(n_obs)
action = action_spec.rand()
next_reward = torch.randn(1)
next_done = torch.zeros(1, dtype=torch.bool)
get loss value
loss_val = dqn_loss(

observation=observation,
next_observation=next_observation,
next_reward=next_reward,
next_done=next_done,
action=action)

Figure 7: TensorDict-free DQN Loss usage.

when working with Decision Transformers (Chen et al., 2021a), which are typically trained with a
different lookback window on the collected data than the one used during inference. Duplicating
the same transform in the environment and in the buffer with a different set of parameters facilitates
the implementation of these techniques.

Importantly, this modularity of the buffer class also makes it easy to design new buffer instances,
which we expect to have a positive impact on researchers. For example, a team of researchers
developing a novel and more efficient sampling strategy can easily build new replay buffer instances
using the proposed parent parent class while focusing on the improvement of a single of its pieces.

Distributed replay buffers: our buffer class supports Remote Procedural Control (RPC) calls through
torch.distributed.rpc. In simple terms, this means that these buffers can be extended or
accessed by distant nodes through a remote call to buffer.extend or buffer.sample. With
the utilization of efficient shared memory-mapped storage when possible and multithreaded requests,
the distributed replay buffer significantly enhances the transfer speed between workers, increasing it
by a factor of three to ten when compared to naive implementations.

E USING LOSS MODULES WITHOUT TENSORDICT

In an effort to free the library from its bounds to specific design choices, we make it possible to create
certain loss modules without any interaction with TensorDict or related classes. For example, figure 7
shows how a DQN loss function can be designed without recurring to a TensorDictModule
instance.

Although the number of loss modules with this functionality is currently limited, we are actively
implementing that feature for a larger set of objectives.

25

F TRAINER

The modularity of TorchRL’s components allows developers to write training scripts with explicit
loops for data collection and neural network optimization in the traditional structure adopted by
most ML libraries. While this enables practitioners to keep tight control over the training process,
it might hinder TorchRL’s adoption by first-time users looking for one-fits-all solutions. For this
reason, we also provide a Trainer class that abstract this further complexity. By exposing a simple
train() method, trainers take care of running data collection and optimization while providing
several hooks (i.e., callbacks) at different stages of the process. These hooks allow users to customize
various aspects of data processing, logging, and other training operations. Trainers also encourage
reproducibility by providing a checkpointing interface that allows to abruptly interrupt and restart
training at any given time while saving models and RB of any given size.

The trainer executes a nested loop, consisting of an outer loop responsible for data collection and
an inner loop that utilizes this data or retrieves data from the replay buffer to train the model. The
Trainer class does not constitute a fundamental component; rather, it was developed as a simplified
entry point to novice practitioners in the field.

In Figure 8 we provide two code listing examples to train a DDPG agent. The left approach utilizes
the high-level Trainer class. On the other hand, the right listing explicitly defines the training loop,
giving more control to the user over every step of the process.

G SINGLE-AGENT REINFORCEMENT LEARNING EXPERIMENTS

To test the correctness and effectiveness of TorchRL framework components, we provide documented
validations of 3 online algorithms (PPO, A2C, IMPALA) and 3 offline algorithms (DDPG, TD3 and
SAC) for 4 MuJoCo environments (HalfCheetah-v3, Hopper-v3, Walker2d-v3 and Ant-v3) and 4
Atari environments (Pong, Freeway, Boxing and Breakout). Training plots are shown in Figure 9,
Figure 11 and Figure 12.

G.1 ONLINE REINFORCEMENT LEARNING EXPERIMENTS

G.1.1 IMPLEMENTATION DETAILS

For A2C (Mnih et al., 2016) and PPO (Schulman et al., 2017), we reproduce the results from the
original work on MuJoCo and Atari environments, using the same hyperparameters and network
architectures. We also reproduce Atari results for the IMPALA (Espeholt et al., 2018) distributed
method. Ensuring a fair comparison among the off-policy algorithms DDPG (Lillicrap et al., 2015),
TD3(Fujimoto et al., 2018b), and SAC(Haarnoja et al., 2018), we uniformly apply the same archi-
tecture, optimizer, learning rate, soft update parameter, and batch size as used in the official TD3
implementation. Exploration-specific parameters for DDPG and TD3 are taken directly from the
according paper. To initiate the process, each algorithm begins with 10,000 steps of random actions,
designed to adequately populate the replay buffer.

G.1.2 HYPERPARAMETERS

Tables 6, 7 and 8 display all hyperparameters values and network architecture details required to
reproduce our online RL results.

G.2 OFFLINE REINFORCEMENT LEARNING EXPERIMENTS

G.2.1 IMPLEMENTATION DETAILS

To replicate the pre-training results of both the Decision Transformer Chen et al. (2021a) and the
Online Decision Transformer Zheng et al. (2022), we utilize the base GPT-2 transformer from Hugging
Face Wolf et al. (2020), as presented in the official implementations. All parameters concerning
architecture and training procedures are adopted directly from the specifications provided in the
publications. Correspondingly, for IQL Kostrikov et al. (2021), we have selected the architecture and
parameters mentioned in the paper to enable performance reproduction.

26

Environment
env = GymEnv(’Pendulum-v1’)
Model: Actor and value
mlp_actor = MLP(

num_cells=64,
depth=3,
in_features=3,
out_features=1

)
actor = TensorDictModule(

mlp_actor,
in_keys=[’observation’],
out_keys=[’action’]

)
mlp_value = MLP(

num_cells=64, depth=2,
in_features=4,
out_features=1

)
critic = TensorDictSequential(

actor,
TensorDictModule(

mlp_actor,
in_keys = [

’observation’,
’action’,

],
out_keys =
[’state_action_value’]

)
)
Data Collector
collector = SyncDataCollector(

env,
AdditiveGaussianWrapper(

actor
),
frames_per_batch=1000,
total_frames=1000000,

)
Replay Buffer
buffer = TensorDictReplayBuffer(

storage=LazyTensorStorage(
max_size=100000,

),
)
Loss Module
loss_fn = DDPGLoss(

actor, crititc,
)
optim=torch.optim.Adam(

loss_fn.parameters(),
lr=2e-4,

)
Trainer
Trainer(

collector=collector
total_frames=1000000,
frame_skip=1,
optim_steps_per_batch=1,
loss_module=loss_fn,
optimizer=optim,

)
trainer.train()

Environment
env = GymEnv(’Pendulum-v1’)
Model: Actor and value
mlp_actor = MLP(

num_cells=64, depth=3,
in_features=3,
out_features=1

)
actor = TensorDictModule(

mlp_actor,
in_keys=[’observation’],
out_keys=[’action’]

)
mlp_value = MLP(

num_cells=64,
depth=2,
in_features=4,
out_features=1

)
critic = TensorDictSequential(

actor,
TensorDictModule(

mlp_actor,
in_keys = [

’observation’,
’action’,

],
out_keys =
[’state_action_value’]

)
)
Data Collector
collector = SyncDataCollector(

env,
AdditiveGaussianWrapper(

actor
),
frames_per_batch=1000,
total_frames=1000000,

)
Replay Buffer
buffer = TensorDictReplayBuffer(

storage=LazyTensorStorage(
max_size=100000,

),
)
Loss Module
loss_fn = DDPGLoss(

actor, crititc,
)
optim=torch.optim.Adam(

loss_fn.parameters(),
lr=2e-4,

)
Training loop
for data in collector:

buffer.extend(data)
sample = buffer.sample(50)
loss = loss_fn(sample)
loss = loss[’loss_actor’] + \

loss[’loss_value’]
loss.backward()
optim.step()
optim.zero_grad()

Figure 8: Trainer class example usage (left). Fully defined training loop (right).
27

Figure 9: Online RL algorithms trained on MuJoCo environments. We report the mean and standard
deviation reward over 5 random seeds. Each was trained for 1M frames.

Table 6: Training parameters for single-agent on-policy algorithms on MuJoCo environments.

A2C PPO
Discount (γ) 0.99 Discount (γ) 0.99
GAE λ 0.95 GAE λ 0.95
num envs 1 num envs 1
Horizon (T) 2048 Horizon (T) 64
Adam lr 3e−4 Adam lr 3e−4

Minibatch size 64 Minibatch size 64
Policy architecture MLP Policy architecture MLP
Value net architecture MLP Value net architecture MLP
Policy layers [64, 64] Policy layers [64, 64]
Value net layers [64, 64] Value net layers [64, 64]
Policy activation Tanh Policy activation Tanh
Value net activation Tanh Value net activation Tanh
Critic coef. 0.5 Critic coef. 0.5
Entropy coef. 0.0 Entropy coef. 0.0

Num. epochs 10
Clip ϵ 0.2

28

Figure 10: To verify its paper performance we ran SAC on the HalfCheetah-v3 MuJoCo environment
for 3M frames. We report the mean and standard deviation reward over 5 random seeds.

Figure 11: Online RL algorithms with discrete action space trained on Atari environments. We report
the mean and standard deviation reward over 5 random seeds. Algorithms were trained for 40M game
frames (10 M timesteps since we use frameskip 4).

29

Figure 12: Distributed training results for IMPALA trained on 3 Atari environments. We report the
mean and standard deviation reward over 5 random seeds. IMPALA was trained for 200M game
frames (50M timesteps since we use frameskip 4) for each environment, however, for the Pong and
Boxing environments rewards of only the first 50M frames are visualized as IMPALA converged
early. For Freeway, IMPALA is unable to get more that 0.0 reward, both in the original paper and in
our experiments.

Table 7: Training parameters for single-agent on-policy algorithms on Atari environments. For all
cases, we follow the environment data transforms from DeepMind (Mnih et al., 2013)

.
A2C PPO IMPALA

Discount (γ) 0.99 Discount (γ) 0.99 Discount (γ) 0.99
GAE λ 0.95 GAE λ 0.95 num envs 1 (12 workers)
num envs 1 num envs 1 Horizon (T) 80
Horizon (T) 80 Horizon (T) 4096 RMSProp lr 6e−4

Adam lr 1e−4 Adam lr 2.5e−4 RMSProp alpha 0.99
Minibatch size 80 Minibatch size 1024 Minibatch size 32 x 80
Policy architecture CNN Policy architecture CNN Policy architecture CNN
Value net architecture CNN Value net architecture CNN Value net architecture CNN
Policy layers [512] Policy layers [512] Policy layers [512]
Value net layers [512] Value net layers [512] Value net layers [512]
Policy activation ReLU Policy activation ReLU Policy activation ReLU
Value net activation ReLU Value net activation ReLU Value net activation ReLU
Critic coef. 0.5 Critic coef. 0.5 Critic coef. 0.5
Entropy coef. 0.01 Entropy coef. 0.01 Entropy coef. 0.01

Num. epochs 3
Clip ϵ 0.1

30

Table 8: Training parameters for single-agent off-policy algorithms.

SAC TD3 DDPG
Discount (γ) 0.99 Discount (γ) 0.99 Discount (γ) 0.99
Adam lr (all nets) 3e−4 Adam lr (all nets) 3e−4 Adam lr (all nets) 3e−4

Batch size 256 Batch size 256 Batch size 256
Policy net MLP Policy net MLP Policy net MLP
Q net MLP Q net MLP Q net MLP
Policy layers [256, 256] Policy layers [256, 256] Policy layers [256, 256]
Q net layers [256, 256] Q net layers [256, 256] Q net layers [256, 256]
Policy activation ReLU Policy activation ReLU Policy activation ReLU
Q net activation ReLU Q net activation ReLU Q net activation ReLU
Target polyak 0.995 Target polyak 0.995 Target polyak 0.995
Buffer size 1000000 Buffer size 1000000 Buffer size 1000000
Init rand. frames 10000 Init rand. frames 10000 Init rand. frames 10000

Exploration noise N(0.0, 0.1) Exploration noise OU(0.0, 0.2)
Target noise N(0.0, 0.2) ϵ init 1.0
Noise clip 0.5 ϵ end 0.1
Policy delay 2 ϵ annealing steps 1000

θ 0.15

Figure 13: Offline RL algorithms pre-trained on hopper-medium-v2 (left) and halfcheetah-medium-v2
(right) D4RL datasets. We report the mean and standard deviation reward over 3 random seeds. Each
run consists of 50,000 network updates.

31

Table 9: Training parameters for offline algorithms Decision Transformer (DT), Online Decision
Transformer (oDT) and Implicit Q-Learning (IQL) for the hopper-medium-v2 (Ho) and halfcheetah-
medium-v2 (HC) D4RL datasets.

DT oDT IQL

Lamb lr 1e−4 Lamb lr 1e−4 Adam lr 3e−4

Batch size 64 Batch size 256 Batch size 256
Weight decay 5e−4 Weight decay 5e−4 Policy net MLP
Scheduler LamdaLR Scheduler LamdaLR Q net MLP
Warmup steps 10000 Warmup steps 10000 Value net MLP
Train context 20 Train context 20 Policy layers [256, 256]
Eval context Ho 20 Eval context Ho 20 Q net layers [256, 256]
Eval context HC 5 Eval context HC 5 Value net layers [256, 256]
Policy net GPT2 Policy net GPT2 Policy activation ReLU
Embd dim 128 Embd dim 512 Q net activation ReLU
Hidden layer 3 Hidden layer 4 Value net activation ReLU
Attn heads 1 Attn heads 4 Target polyak 0.995
Inner layer dim 512 Inner layer dim 2048 temperature (β) 3.0
Activation ReLU Activation ReLU expectile (τ) 0.7
Resid. pdrop 0.1 Resid. pdrop 0.1 Discount (γ) 0.99
Attn pdrop 0.1 Attn pdrop 0.1
Action head [128] Action head [512]
Reward scaling 0.001 Reward scaling 0.001
Target return Ho 3600 Target return Ho 3600
Target return HC 6000 Target return HC 6000

init alpha 0.1

G.2.2 HYPERPARAMETERS

Table 9 displays all hyperparameter values and network architecture details required to reproduce our
offline RL results.

H MULTI-AGENT REINFORCEMENT LEARNING EXPERIMENTS

Most of TorchRL’s components are default-compatible with Multi-Agent RL (MARL), and MARL-
specific components are also available. The requirement for nested data structures and multi-
dimensional batch-size handling make TensorDict the ideal structure to support data representation in
MARL contexts. TensorDicts allow to carry both per-agent data (e.g., reward in POMGs (Littman,
1994)) and shared data (e.g., global state, reward in Dec-POMDPs (Bernstein et al., 2002)) by storing
the tensors at the relevant nesting level, thus highlighting their semantic difference and optimizing
storage. MARL also needs to cope with heterogeneous input/output domains, (ie, settings where the
shape of the agent’s attributes differ). TorchRL and TensorDict provide appropriate primitives to
handle these cases with minimal disruption in the code. As for single-agent solutions, MARL losses
can easily be swapped and are semantically similar to their single-agent counterparts.

To showcase TorchRL’s MARL capability, we implement six state-of-the-art algorithms and bench-
mark them on three tasks in the VMAS simulator Bettini et al. (2022). Unlike existing MARL
benchmarks (e.g., StarCraft Samvelyan et al. (2019), Google Research Football Kurach et al. (2020)),
VMAS provides vectorized on-device simulation and a set of scenarios focused on continuous and
partially observable multi-robot cooperation tasks. TorchRL and VMAS both use a PyTorch backend,
enabling performance gains when both sampling and training are run on-device. We implement
MADDPG Lowe et al. (2017), IPPO de Witt et al. (2020), MAPPO Yu et al. (2022), IQL Tan (1993),
VDN Sunehag et al. (2018), and QMIX Rashid et al. (2020). This selection of algorithms presents
many of the different flavors discussed in this section. For uniform evaluation, we perform all training
on-policy with the same hyperparameters and networks. For algorithms that require discrete actions,
we use the default VMAS action discretization (which transforms 2D continuous actions into 5
discrete directions). We evaluate all algorithms in three environments: (i) Navigation (Figure 14a),

32

(a) Navigation. (b) Balance. (c) Sampling.

Figure 14: The three VMAS multi-robot control tasks used in the experiments.

where agents need to reach their target while avoiding collisions using a LIDAR sensor, (ii) Balance
(Figure 14b), where agents affected by gravity have to transport a spherical package, positioned
randomly on top of a line, to a given goal at the top, and (iii) Sampling (Figure 14c), where agents
need to cooperatively sample a probability density field. More details on the tasks, hyperparameters,
and training scripts are available in the additional material. Figure 2 shows the results. In all tasks,
we can observe the effectiveness of PPO-based methods with respect to Q-learning ones, this might
be due to the suboptimality of discrete actions in control tasks but also aligns with recent findings in
the literature Yu et al. (2022); de Witt et al. (2020). In the sampling scenario, which requires more
cooperation, we see how IQL fails due to the credit assignment problem, while QMIX and VDN are
able to achieve better cooperation.

Overall, our experiments highlight how different MARL solutions can be compared on diverse tasks
with minimal user effort. In fact, the scripts used for this comparison present minimal differences
(mainly only in the loss and policy class installations), proving TorchRL to be a flexible solution also
in MARL settings.

H.1 COMPARISON WITH RLLIB

To further assess the correctness of our implementations, we compare the IPPO algorithm (de Witt
et al., 2020) with the RLlib (Liang et al., 2018) library on the three VMAS tasks in Figure 14. For the
RLlib implementation, we use the code provided with (Bettini et al., 2023). The TorchRL code is
publicly available in the repository examples. The comparison, shown in Figure 15, demonstrates
that, while TorchRL and RLlib achieve similar returns, TorchRL takes significantly lower time thanks
to its ability to leverage the vectorization of the VMAS simulator.

H.2 IMPLEMENTATION DETAILS

We now describe the implementation details for our experiments.

H.2.1 HYPERPARAMETERS

To uniform the training process across all algorithms, we train all algorithms on-policy. The hyperpa-
rameters used are the same for all experiments and are shown in Table 10. In general, the training
scripts have the following structure; There is an outer loop performing sampling. At each iteration,
Batch size frames are collected using # VMAS vectorized envs with Max episode steps. Batch size

Minibatch size
optimization steps are then preformed for SDG Iterations using an Adam optimizer. The training
ends after # training iterations. Critics and actors (when used) are two-layer MLPs with 256 cells and
tanh activation. Parameters are shared in all algorithms apart from MADDPG to follow the original
paper implementation.

H.2.2 ENVIRONMENTS

The tasks considered are scenarios taken from the VMAS Bettini et al. (2022) simulator. They all
consider agents in a 2D continuous workspace. To move, agents take continuous 2D actions which
represent control forces. Discrete action can be set and will map to the five options: up, down, left,

33

0 10 20 30
Number of frames (M)

−0.5

0.0

0.5

1.0

Navigation

0 10 20 30
Number of frames (M)

0

20

40

Balance

0 10 20 30
Number of frames (M)

10

20

30

Sampling

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
re

w
ar

d

RLlib TorchRL

(a) Return.

0 10 20 30
Number of frames (M)

0

200

400

Navigation

0 10 20 30
Number of frames (M)

100

200

Balance

0 10 20 30
Number of frames (M)

0

100

200

300

Sampling

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

It
er

at
io

n
ti

m
e

(s
)

RLlib TorchRL

(b) Time.

Figure 15: Comparison of TorchRL and RLlib on three VMAS tasks using the IPPO algorithm (de Witt
et al., 2020). The comparison shows that while TorchRL and RLlib achieve similar returns, TorchRL
takes significantly less time thanks to its ability to leverage the vectorization of the VMAS simulator.
We report the mean and standard deviation episodic return over 3 random seeds. Each run consists of
500 iterations of 60, 000 steps each, with an episode length of 100 steps.

Table 10: MARL training parameters.

Training General PPO
Batch size 60000 Discount γ 0.9 Clip ϵ 0.2
Minibatch size 4096 Max episode steps 100 GAE λ 0.9
SDG Iterations 45 NN Type MLP Entropy coeff 0
VMAS vectorized envs 600 # of layers 2 KL coeff 0
Learning rate 5e-5 Layer size 256
Max grad norm 40 Activation Tanh
training iterations 500 # agents 3

right, and staying still. In the following, we describe in detail the three environments used in the
experiment:

• Navigation (Figure 14a): Randomly spawned agents (circles with surrounding dots) need to navigate
to randomly spawned goals (smaller circles). Agents need to use LIDARs (dots around them) to
avoid running into each other. For each agent, we compute the difference in the relative distance
to its goal over two consecutive timesteps. The mean of these values over all agents composes the
shared reward, incentivizing agents to move towards their goals. Each agent observes its position,
velocity, lidar readings, and relative position to its goal.

• Balance (Figure 14b) Agents (blue circles) are spawned uniformly spaced out under a line upon
which lies a spherical package (red circle). The team and the line are spawned at a random x
position at the bottom of the environment. The environment has vertical gravity. The relative x
position of the package on the line is random. In the top half of the environment, a goal (green
circle) is spawned. The agents have to carry the package to the goal. Each agent receives the same
reward which is proportional to the distance variation between the package and the goal over two
consecutive timesteps. The team receives a negative reward of −10 for making the package or the
line fall to the floor. The observations for each agent are: its position, velocity, relative position
to the package, relative position to the line, relative position between package and goal, package

34

velocity, line velocity, line angular velocity, and line rotation modπ. The environment is done either
when the package or the line falls or when the package touches the goal.

• Sampling (Figure 14c) Agents are spawned randomly in a workspace with an underlying Gaussian
density function composed of three Gaussian modes. Agents need to collect samples by moving in
this field. The field is discretized to a grid (with agent-sized cells) and once an agent visits a cell its
sample is collected without replacement and given as a reward to the whole team. Agents can use a
lidar to sense each other in order to coordinate exploration. Apart from lidar, position, and velocity
observations, each agent observes the values of samples in the 3x3 grid around it.

I COMPARISON OF DESIGN DECISIONS

As a conclusion note, we provide some more insight into the differences between TorchRL and other
libraries UX and design choices.

In contrast with Stable-baselines(Raffin et al., 2021) or EfficientRL (Liu et al., 2021), TorchRL aims
to provide researchers with the necessary tools to build the next generation of control algorithms,
rather than providing precisely benchmarked algorithms. For this reason, TorchRL’s code will usually
be more verbose than SB3’s because it gives users full control over the implementation details of
their algorithm. For example, TorchRL does not make opinionated choices regarding architecture
details or data collection setups. Nevertheless, the example repertory and tutorials are available to
assist those who wish to get a sense of what configurations are typically deemed more suitable. The
trainer class and multiple examples, tutorials, and rich documentation are available to help users get
started with their specific problems.

On a similar note, we note that the Tianshou (Weng et al., 2022) entry point for most algorithms is
usually a Policy class that contains an actor, possibly a value network, an optimizer, and other
components. In TorchRL, these items are kept separate to allow users to orchestrate these components
at will.

Another difference between TorchRL and other frameworks lies in the data carriers they use: relying
on a common class to facilitate inter-object communication is not a new idea in the RL and control
ecosystem. Nevertheless, we believe that TensorDict elegantly brings features that will drive its adop-
tion by the ML community. In contrast, Tianshou’s Batch has a narrower scope than TensorDict.
Whereas the former is tailored for RL, the latter can be used across ML domains. Additionally,
TensorDict has a larger set of functionalities and a dedicated tensordict.nn package that
blends it within the PyTorch ecosystem as shown above.

Next, TorchRL is less an extension of a simulator than other libraries. For instance, Tianshou mainly
supports Gym/Gymnasium environments (Brockman et al., 2016) while TorchRL is oblivious to
the simulation backend and works indifferently with DeepMind control, OpenAI Gym, or any other
simulator.

Finally, TorchRL opts for a minimal set of core dependencies (PyTorch, NumPy, and tensordict)
but a maximal coverage of optional external backends whether it is in terms of environments and
simulators, distributed tools (Ray or submitit), or loggers. Restricting the core dependencies comes
with multiple benefits, both in terms of usability and efficiency: we believe that RLlib’s choice of
supporting multiple ML frameworks severely constrains code flexibility and increments the amount
of code duplication. This has a significant impact on its SampleBatch data carrier, which is forced
to be a dictionary of NumPy arrays, thus leading to multiple inefficient conversions if both sampling
and training are performed on GPU.

35

	Introduction
	TorchRL components
	Ecosystem
	Results
	Conclusion
	Opensource repositories
	TensorDict functionality
	TensorDictBase and subclasses
	tensordict.nn: Modules and functional API
	TensorDict vs other tensor carriers
	TensorDict vs other RL data carriers
	TensorDict vs PyTree

	TensorDict overhead measurement
	TensorDict vs PyTree
	TensorDict functional calls vs functorch

	Environment API
	Replay Buffers
	Using loss modules without TensorDict
	Trainer
	Single-agent Reinforcement Learning Experiments
	Online Reinforcement Learning Experiments
	Implementation details
	Hyperparameters

	Offline Reinforcement Learning Experiments
	Implementation details
	Hyperparameters

	Multi-Agent Reinforcement Learning Experiments
	Comparison with RLlib
	Implementation details
	Hyperparameters
	Environments

	Comparison of design decisions

