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Evolutionary science provides evidence that diversity confers re-
silience. Yet, traditional multi-agent reinforcement learning tech-
niques commonly enforce homogeneity to increase training sample
efficiency. When a system of learning agents is not constrained to
homogeneous policies, individual agents may develop diverse behav-
iors, resulting in emergent complementarity that benefits the system.
Despite this feat, there is a surprising lack of tools that measure be-
havioral diversity in systems of learning agents. Such techniques
would pave the way towards understanding the impact of diversity
in collective resilience and performance. In this paper, we introduce
System Neural Diversity (SND): a measure of behavioral heterogene-
ity for multi-agent systems where agents have stochastic policies.
We discuss and prove its theoretical properties, and compare it with
alternate, state-of-the-art behavioral diversity metrics used in cross-
disciplinary domains. Through simulations of a variety of multi-agent
tasks, we show how our metric constitutes an important diagnostic
tool to analyze latent properties of behavioral heterogeneity. By com-
paring SND with task reward in static tasks, where the problem does
not change during training, we show that it is key to understanding the
effectiveness of heterogeneous vs homogeneous agents. In dynamic
tasks, where the problem is affected by repeated disturbances during
training, we show that heterogeneous agents are first able to learn
specialized roles that allow them to cope with the disturbance, and
then retain these roles when the disturbance is removed. SND allows
a direct measurement of this latent resilience, while other proxies
such as task performance (reward) fail to.
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D iversity is fundamental to life and commonplace in nat-
ural systems (1). In studying natural collective systems,

biologists and ecologists have shown how functional diver-
sity (2), which characterizes species with respect to differences
in their behavioral traits, impacts ecosystem survival. Indeed,
the lack of diversity has been shown to have devastating ef-
fects (3). The scientific field devoted to the analysis of diversity
is, therefore, of paramount importance.

To study behavioral diversity, we first need to be able to
measure it. While a variety of measures of diversity exist for
natural systems (4), there is a lack of works studying behavioral
diversity in engineered (artificial) systems. In this research,
we are interested in measuring diversity and its impact in
multi-agent systems, where collective intelligence is needed to
complete a task. Collective intelligence has been shown to exist
in human teams (5) and not to be dependent on maximum
individual intelligence or average individual intelligence, but
to be highly correlated with the social sensitivity of team
members. It has been observed that “teams with moderately
diverse cognitive styles usually perform better than those that
are very similar in cognitive styles and also those that differ too
much” (6). Several similarities can be drawn between the realm

of humans and that of learning agents, as these characteristics
are also observable in the context of multi-agent learning. A
metric for diversity in artificial multi-agent systems would
allow us to measure previously unobservable aspects of learned
collective intelligence and thus better analyze the impact of
diversity.

Multi-agent learning is a powerful computational paradigm
which can provide effective solutions to hard problems (7).
It has been employed in a variety of domains including rule
compliance (8), robotics (9), traffic-control (10), and smart
city energy management (11). Among learning paradigms,
Multi-Agent Reinforcement Learning (MARL) (12) stands
out due to its resemblance to learning in natural systems.
In MARL, agents learn from experiences and rewards col-
lected through interactions with the world. Such interactions
are performed using policies, which are behavioral functions,
usually represented as neural networks, mapping an agent’s
observation to a probabilistic action distribution. Traditional
MARL algorithms constrain policies to be identical for agents
with the same objective in order to improve training sample
efficiency (13–15). This causes the agents to become behav-
iorally homogeneous. On the other hand, when policies can
diverge, and thus output different action distributions for the
same observation, we refer to them as heterogeneous. MARL
paradigms for training heterogeneous policies have recently
been proposed (16) and shown to have resilience benefits.

While current methods allow to enable heterogeneity in
MARL, they lack a structured measure of behavioral diversity.
The development of a reliable behavioral heterogeneity metric
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is a necessary stepping stone that would allow: (1) an analysis
of the impact of diversity, and (2) its control. Current solutions
designed to control diversity in MARL (17–20) tackle problem
(2) through proxy measures (e.g., reward). This approach,
however, is inefficient as it is not able to measure heterogeneity
directly and thus it cannot model the true relationship between
diversity and performance. For these reasons, we are interested
in developing a system behavioral heterogeneity metric. In
addition to satisfying the formal properties of a metric, we
define two key properties: (1) given a fixed inter-agent pairwise
behavioral distance, the metric should not depend on the
number of agents, and (2) the metric should decrease as more
agents assume the same behaviors. Property (1) would allow
us to compare heterogeneity across different team sizes and
Property (2) would allow the metric to measure behavioral
redundancy.

In this paper, we introduce System Neural Diversity (SND),
a measure of behavioral heterogeneity in multi-agent learning.
With the term neural diversity we refer to behavioral hetero-
geneity between learning agents, as their behaviors are repre-
sented by neural networks. To compute SND, we firstly define
a pairwise inter-agent behavioral distance. Pairwise distances
are then aggregated into a system-wide SND. We prove that
SND follows Property (1) and (2). Furthermore, we juxtapose
SND with Hierarchic Social Entropy (HSE) (21), a state-of-
the-art behavioral heterogeneity metric used in robotics, and
show that HSE does not follow the properties defined, thus
providing a complementary view of behavioral diversity.

We perform a set of evaluations using the proposed metric
in order to study the following research question: “What is
the impact of neural diversity on multi-agent learning?” .
Our studies in static (i.e., fixed during training) and dynamic
(i.e., changing during training) multi-agent problems yield the
following insights:

1. An SND of 0 indicates that homogeneous training should
be preferred to benefit from sample efficiency.

2. An SND greater than 0, when heterogeneous paradigms
obtain higher rewards than homogeneous ones, indicates
that heterogeneity enables performance.

3. An SND greater than 0, when homogeneous and heteroge-
neous paradigms obtain the same reward, indicates that
heterogeneity enables resilience.

4. In cases where the task undergoes repeated dynamic dis-
ruptions, SND is able to expose how heterogeneity allows
agents to learn and maintain latent skills for resilience.

SND allows us to make these insights by providing a structured
measure of behavioral heterogeneity, a quantity frequently
overlooked in previous work.

Contributions. We claim the following contributions:

• We introduce System Neural Diversity, a metric of behav-
ioral heterogeneity for multi-agent learning.

• We study the impact of system neural diversity, measuring
the previously unobservable benefits of heterogeneity in
collective static and dynamic tasks.

Related Work. In this section, we give an overview of existing
diversity measures used in different domains.

Diversity Measures in MARL. Diversity in MARL has gained in-
creasing attention, with recent works proposing architectures
to enable diversity in multi-agent teams. In HetGPPO (16)
the authors present an taxonomy of diversity classes and use it
to classify existing heterogeneous MARL solutions. We refer
the reader to this work for an overview of available hetero-
geneous MARL methods and their differences. While some
solutions are able to control diversity as a function of training
performance (17–20), they do so without being able to mea-
sure the resulting heterogeneity (i.e., open-loop control). The
problem of developing a reliable diversity metric is frequently
overlooked. Such a metric can then provide the feedback signal
necessary to control diversity (i.e., for closed-loop control).

The works that most relate to this research are the ones
that tackled the problem of developing a diversity metric
for MARL. In (22) the authors introduce a diversity met-
ric that uses sampled discrete actions from agents’ policies
to approximate their distributions. Total variation distance
is used to compute the divergence among the resulting dis-
crete distributions. Similarly, in (23), behavioral distances are
obtained using sampled action datapoints. These methods
use approximated distributions, leading to a decrease in the
metric’s accuracy. Another action-based diversity metric was
introduced in (24). The authors propose to use symmetric
Kullback–Leibler (KL) divergence to measure behavioral dis-
tances. However, symmetric KL does not satisfy the triangle
inequality property, and hence, it is not a statistical metric.
In (25) the authors propose to use f-divergence between occu-
pancy measures to quantify behavioral diversity in zero-sum
games. The proposed solution, however, becomes computa-
tionally intractable for more general Markov games. Lastly
a behavioral metric in embedding space is proposed in (26),
where mappings between policies and embeddings are learned.

In parallel, a branch of single-agent population-based RL
has started to employ methods from Quality-Diversity opti-
mization (27, 28). This is a population-based evolutionary
technique, in which populations are ‘bred’ to maximize both
performance and diversity. A range of techniques have been
proposed to analyze diversity in this domain (29, 30). In (31),
authors propose a diversity measure that computes the popu-
lation diversity as the determinant of the agents’ behavioral
distance matrix. The agent distances, however, are bounded
and are computed among sampled actions over randomly sam-
pled states, which can lead to policies being evaluated in states
they have not been trained on.

Diversity Index. Diversity indices are quantitative measures of
the number of different species in a community. They are
commonly used in ecology and biology to represent different as-
pects of diversity such as richness, evenness, and divergence (4).
They measure the distribution of n elements into c classes,
where the proportion of elements in each class h ∈ {1, c} is
noted as ph. Most of these indices are special cases of the true
diversity index or Hill numbers (32). In particular, Shannon
entropy (33) is equivalent to the logarithm of the true diversity
of order 1 and takes the following form:

E = −
c∑

h=1

ph log2 ph. [1]

This index is adopted across a wide range of domains as it
weights each class by its proportional abundance.

2 Bettini et al.



Despite the wide adoption of diversity indices, they are
not directly applicable to measuring behavioral diversity in
MARL. This is because they rely on a predefined number of
classes or species, while the multi-agent systems we consider
reside in a continuous time-varying behavioral (i.e., policy)
space.

Diversity Measures in Robotics. When agents are embodied as
robots, physical differences can emerge, leading to different
capabilities. In (34), Prorok et al. characterize such differences
in a diversity matrix representing the species and traits of a
robot population. The rank of such matrices can be related
to behavioral redundancy in the population and eigenspecies
can be identified. Diversity matrices can then be compared to
measure the difference between two agents.

Behavioral differences, however, are not always correlated
with physical ones and need a dedicated measure in policy
space in order to be captured. Li et al. (35) propose a behav-
ioral specialization metric that is, however, obtained through
a correlation with team performance. Twu et al. (36) propose
a computation-light heterogeneity metric that assumes a fixed
number of diversity classes. Close to our work, Balch proposed
Hierarchic Social Entropy (HSE) (21). This measure computes
the behavioral distance between two agents as the difference
of their deterministic actions over all states. It then uses this
distance to compute a team level metric. In particular, agents
are hierarchically divided into behavioral clusters. For each
hierarchical level, the Shannon entropy (Eq. 1) is computed
on the distribution of agents in behavioral clusters. At hierar-
chical level l, for example, agents i, j with behavioral distance
dHSE(i, j) ≤ l will belong to the same cluster and E(l) will
denote the Shannon entropy of the clusters. HSE is then
computed as

HSE =
∫ ∞

0
E(l)dl. [2]

Since Shannon entropy does not take into account the distance
between classes, hierarchical clustering is used in HSE to
make the metric depend on such distances. We will analyze
and compare HSE with our proposed metric in the following
sections, as the two measures provide complementary tools to
assess diversity.

Problem Formulation

We now formulate the multi-agent MARL problem analyzed
in this work. To do so, we first introduce the multi-agent
extension of a Partially Observable Markov Decision Process
(POMDP) (37).

Partially Observable Markov Games. A Partially Observable
Markov Game (POMG) is defined as a tuple〈

N , S, {Oi}i∈N , {σi}i∈N , {Ai}i∈N , {Ri}i∈N , T , γ
〉

,

where N = {1, . . . , n} denotes the set of agents, S is the state
space, shared by all agents, and, {Oi}i∈N and {Ai}i∈N are
the observation and action spaces, with Oi ⊆ S, ∀i ∈ N .
Further, {σi}i∈N and {Ri}i∈N are the agent observation and
reward functions (potentially identical for all agents), such
that σi : S 7→ Oi, and, Ri : S × {Ai}i∈N × S 7→ R. T is the
stochastic state transition model, defined as T : S ×{Ai}i∈N ×
S 7→ [0, 1], which outputs the probability T (st,

{
at

i

}
i∈N

, st+1)

of transitioning to state st+1 given the current state st and
actions

{
at

i

}
i∈N

. Lastly, γ is the discount factor.
Agents have a stochastic policy πθi (ai|oi), which maps

observations to action distributions that are sampled in the
POMG to maximize the sum of discounted rewards received
from the environment. The policy of agent i is conditioned on
neural network parameters θi. To train policies πθi we adopt
the (Het)GPPO models presented in (16). Using GPPO we
perform homogeneous training via parameter sharing, thus
θ = θ1 = . . . = θn. Homogeneous agents are constrained to
use the same policy πθ but benefit from the higher sample effi-
ciency resulting from sharing parameters. On the other hand,
when using HetGPPO, agents are able to learn independent
heterogeneous policies πθi and thus can develop behavioral
differences.

In this work, we do not consider homogeneous policies
which leverage explicit behavioral typing (16) to emulate het-
erogeneous policies. Such a typing occurs when a shared
homogeneous policy is able to type agents based on a unique
identifier concatenated to the input. Using this trick, a homo-
geneous policy can learn a multi-behavioral policy, conditioned
on those unique inputs (e.g., indices). For an in-depth discus-
sion on the drawbacks of this technique and other behavioral
typing techniques, we refer the reader to (16).

Objective. The goal of this work is to measure the neural
diversity (behavioral heterogeneity) in a system of leaning
agents with heterogeneous policies πθi . Our objective is then
to develop a System Neural Diversity metric,

SND : {πθi }i∈N 7→ R≥0,

that takes as input the agents’ policies and outputs a scalar
value representing the behavioral diversity of the system.

A Metric for System Neural Diversity

Developing a metric to measure neural diversity in a multi-
agent system is a challenging task. This is due to the fact
that reducing a behavioral property dependent on potentially
millions of neural connections to a single scalar value inevitably
leads to high information loss. Our goal is to minimize this
information loss while maintaining informative properties in
the resulting metric.

In order to measure system diversity we first need a way to
compare individuals. We thus tackle the following two tasks.
Firstly, we define a measure of inter-agent pairwise behav-
ioral distance. We structure pairwise behavioral distances
obtained with this measure in a behavioral distance matrix,
which gives an overview of the distribution of agents’ policies
in behavioral space. Secondly, we aggregate the behavioral
distance matrix into a single neural diversity value, which
represents the neural diversity metric of the whole system.
This metric is used to measure behavioral heterogeneity of a
learning multi-agent system. In the following, we discuss the
choice of the functions used for these two tasks, as well as
showcasing and proving the respective properties of interest.

Behavioral Distance. Heterogeneity is a collective concept.
Thus, it cannot be measured as an absolute property pertain-
ing to a single agent in the system, but it has to be expressed
as a relative measure among agents. Therefore, we need to
think about the simplest possible case of measuring behavioral
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diversity and answer the question “How should the behavior
of two agents be compared?”. Motivated by this, we need to
develop a mathematical metric that measures the behavioral
distance of two agents d : N × N 7→ R≥0. The behavioral
distance of agents i and j is then given by d(i, j). We want
d(i, j) to follow the properties of a mathematical metric (38).

Definition 1 (Properties of the behavioral distance met-
ric (38)). For the distance d to be a metric, it has to satisfy
the following properties ∀i, j, k ∈ N :

1. Non-negativity: d(i, j) ≥ 0
2. Identity of indiscernibles: d(i, j) = 0 iff πθi = πθj

3. Symmetry: d(i, j) = d(j, i)
4. Triangle inequality): d(i, j) ≤ d(i, k) + d(k, j)

This set of properties aligns naturally with the behavioral
distance as we can think of two agents i, j to be homogeneous
when d(i, j) = 0 and increasingly heterogeneous as the metric
grows.

Behavioral distance among two agents can be measured
through their policies. Since we are comparing policies of
different agents, we assume that all agents have the same
observation space O = O1 = . . . = On and action space
A = A1 = . . . = An. This allows for physical and behavioral
diversity while making sure that the policies have the same
input and output spaces. Heterogeneous policies will map at
least one observation o ∈ O to two different action distributions
πθi (o) ̸= πθj (o), while homogeneous ones will output the same
distribution πθ(o). Note that differences in parameter space do
not necessarily map to differences in behavioral space (28, 39),
thus we cannot measure diversity directly through differences
between parameters θi and θj , but we need to measure it from
policy outputs πθi (o) and πθj (o).

Our goal is to develop a distance

d(i, j) =
∫

O
f(πθi (o), πθj (o)) do

where a function f , providing a distance between two policies
for a given observation, is evaluated over all possible observa-
tions. In order to develop such a distance we have to tackle
two main tasks: (1) f has to be a measure between the two
probability distributions outputted by the polices and (2) eval-
uating distance over all possible continuous observations is
intractable and, thus, we need a clever sampling strategy to
create a subset of observations for evaluating the distance. In
the following two subsections we discuss how our proposed
distance addresses these issues.

Distance for Stochastic Policies. Stochastic policies map a given
observation to an action distribution. Thus, a comparison of
two agent behaviors can be made through a comparison of
their action distributions over a set of observations. To avoid
sampling from such distributions during distance evaluation,
we can use a closed-form statistical distance computed over
their parameters. There exist a variety of statistical distances.
Distances that follow properties 1-4 of Def. 1 are referred to
as metrics, while statistical distances that only satisfy 1-2
are called divergences. Among divergences (and particularly
f-divergences) the Kullback–Leibler (KL) divergence has been
used extensively in machine learning applications. Despite its
wide adoption, this divergence has several practical problems,

Fig. 1. Wasserstein metric W2(p, q) and KL divergence DKL(p ∥ q) of two
univariate distributions p, q as their standard deviation approaches 0. The value
of W2 in this scenario approaches the absolute difference of their means while KL
divergence approaches infinity.

For instance, even if it can be made symmetric, it does not
follow triangle inequality (prop. 4 of a metric). Triangle in-
equality is useful for determining an upper bound estimate of
the behavioral distance of two agents when their respective
distances to a third agent are available. Among metrics, on
the other hand, we focus our attention on the Wasserstein
metric (40) and on the Hellinger distance (41). If polices πθi

output multivariate Gaussian action distributions, as in this
work, these metrics can be computed in closed-form using
the distributions’ parameters. They measure complementary
aspects of the distance between two distributions p and q. The
Wasserstein metric measures the minimum cost required to
move all the probability mass from p to q in an optimal trans-
port problem formulation. The Hellinger distance increases
inversely proportionally to the probability that p assigns to
every interval to which q assigns a positive probability. This
distance is bounded between 0 and 1 and assumes its maximum
value when the two distributions do not have any overlapping
probability mass.

Fig. 1 depicts an illustrative example to further elucidate
the differences between the Wasserstein metric and KL di-
vergence. In this example, p ∼ N (µp, σ2) and q ∼ N (µq, σ2)
are univariate Gaussian distributions. W2(p, q) represents
the Wassertein metric and DKL(p ∥ q) the KL divergence.
We observe that, as σ approaches 0, meaning that the prob-
ability mass of both distributions converges to their mean
(as in Dirac delta distributions), DKL(p ∥ q) → ∞ while
W2(p, q) → |µp − µq|. This shows that, in the case the dis-
tributions assign increasing probability mass to their mean,
Wasserstein outputs a bounded value proportional to the dis-
tance between the means, while KL does not. A similar
argument was used to motivate Wasserstein generative adver-
sarial networks (42) where the model architecture significantly
benefited from the use of W2 over KL.

Following the reasons above, we use the Wasserstein metric
in this work to measure the probability distance between two
policies, since, unlike Hellinger, it provides an unbounded
measure ranging to infinity (as diversity can)∗. The resulting
behavioral distance takes the following form:

d(i, j) =
∫

O
W2(πθi (o), πθj (o)) do. [3]

Observation Sampling for Distance Evaluation. Now that we have
chosen the distance used to compare policies, we turn our

∗ In our code we provide implementations of several metrics and distances, including Hellinger, which
can alternatively be used.
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attention to the integral in Eq. 3 used to compute the distance
over the set of all observations O. Since in this work we
are considering continuous observation spaces, we need to
develop a sampling technique that allows us to create a finite
subset of observations B ⊆ O, over which we can evaluate
the behavioral distance between policies πθi (o). We choose to
create B via rollouts (i.e., executions of the policy over time).
In particular, every time we evaluate the behavioral distance,
a set of rollouts is collected from the environment. A rollout
is a collection of environment interactions stored in tuples of
the form ({ot

i}i∈N , {at
i}i∈N , {ot+1

i }i∈N ) with time t ∈ [0, T ].
We denote the sets of agents’ observations and actions at time
t as ot = {ot

i}i∈N and at = {at
i}i∈N , respectively. Thus, we

construct B =
{

ot
}

t∈[0,T ].
When building B, we want to avoid evaluating diversity on

observations that were unseen by the agents during training.
This is because their policies might present undefined behavior
in such cases. Our process of sampling via environment roll-
outs in a Monte-Carlo fashion (43) provides a high likelihood
that these observations were seen previously during training.
While it has zero sampling bias, it is know to have a high vari-
ance in the states visited. We reduce variance by performing
multiple rollouts. The number of rollouts performed has to be
chosen based on the state distribution in the POMDP under
evaluation. Increasing the number of rollouts will decrease
variance but increase the computational cost of evaluating the
distance. Therefore, we can write the final formulation of the
behavioral distance d as:

d(i, j) = 1
|B||N |

∑
ot∈B

∑
k∈N

W2(πθi (ot
k), πθj (ot

k)). [4]

This formulation states that the behavioral distance between
agent i and j is the average Wasserstein metric computed
between the distributions outputted by their policies over the
observations of all agents collected over policy rollouts.

Behavioral Distance Matrix. Having defined the behavioral dis-
tance d(i, j) used in this work, we now structure the inter-agent
distances in a behavioral distance matrix. Let

d(i) = [d(i, 1), . . . , d(i, n)] n = |N |

define the distances between i and all other agents. We can
then define the behavioral distance matrix as

D =
[
d(1)⊤, . . . , d(n)⊤]

.

Looking at the way this matrix is constructed, we can
note some of its proprieties. Firstly, being constructed from
a metric distance, it inherits the properties from Def. 1. In
particular, this matrix is non-negative (Property 1), hollow
(Property 2), and symmetric (Property 3). Furthermore, by
computing the sum of each row d(i), we can obtain a per-
agent contribution to the system diversity. For example, in a
system with n agents where d(1, j) = x, for all j ∈ N \ {1}
and d(i, j) = 0, for all i, j ∈ N \ {1}, we get a contribution
of

∑
j∈N d(1, j) = x(n−1)

n
for agent 1 and a contribution of∑

j∈N d(i, j) = x
n

for all other agents i ∈ N \ {1}. By then
calculating the relative fraction over the resulting values, we
can express the percentage agent contributions to the team
heterogeneity.

Lastly, as in Balch’s HSE, we can define ϵ-homogeneity.

Agent

Goal

Fig. 2. Multi-Agent Goal Navigation example. Agents are spawned at random
positions in a 2D workspace and take velocity actions (colored arrows) to reach their
assigned goal, also spawned at random positions.

Definition 2 (ϵ-homogeneity (21)). A multi-agent system is
ϵ-homogeneous if and only if for all i, j ∈ N , d(i, j) ≤ ϵ.

Example: Multi-Agent Goal Navigation. Let us now look at an ex-
perimental case study to complement the theoretical discussion
on behavioral distance. This example will be used throughout
other parts of this section to provide experimental evidence
that supports and illustrates the theoretical insights.

In this Multi-Agent Goal Navigation example, depicted
in Fig. 2, n agents are spawned at random positions in a
2D workspace. Each agent is assigned a goal, also spawned
at random. Agents observe the relative position to their
goals and output the mean and standard deviation of a 2D
action distribution representing their desired velocity. This
distribution is represented by two univariate Gaussians, which
are sampled to get the action for each dimension. The reward
for each agent is the difference in the relative distance to its
goal over two consecutive timesteps, incentivizing agents to
move towards their goals. Agents are trained using HetIPPO
(HetGPPO (16) without communication) and the scenario is
created in the VMAS simulator† (44).

We run four training experiments with n = 4 and the
following setups:

• 4 goals: all agents are assigned a different goal
• 3 goals: agents 1, 2 are assigned the same goal and the

rest have different goals
• 2 goals: agents 1, 2, 3 are assigned the same goal and the

remaining agent has a different goal
• 1 goal: all agents are assigned the same goal

In Fig. 3 we report the behavioral distance matrices for the four
experiments. We can observe how, when agents are assigned
the same goal, they learn the same policy, thus decreasing their
behavioral distance. The matrices also show that, for instance,
in the 3 goals case, agents {1, 2} are 0.15-homogeneous, while
in the 1 goal case, the entire system is 0.08-homogeneous. This
shows that the behavioral distance matrix already provides
an important diagnostic tool when assessing the diversity of a
multi-agent system.

System Neural Diversity. Inter-agent behavioral distance con-
stitutes a fine-grained diagnostic tool to assess system diversity.
However, the behavioral distance matrix has size n × n and
thus grows quadratically with the number of agents. This

†https://github.com/proroklab/VectorizedMultiAgentSimulator
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Fig. 3. Behavioral distance matrices for the four experiments run on Multi-Agent Goal Navigation. We can observe how, when agents are assigned the same goal, they become
homogeneous and thus reduce their behavioral distance. We report mean and standard deviation for d(i, j) over 5 random seeds for each experiment. The values are
collected after 300 training iterations each performed over 600 episodes of experience.

dependence on the number of agents is not practical when we
want to read system heterogeneity at a glance. Therefore, we
need to aggregate the information contained in the behavioral
distance matrix into a single scalar output. Balch’s HSE (21)
is a metric introduced for this purpose, which clusters agents
hierarchically based on the behavioral distance matrix and
then computes the Shannon entropy at each hierarchical level
by treating clusters as species. The entropies at the differ-
ent levels are then summed together to obtain a single value.
HSE is a valuable solution to compute system diversity, but
presents some undesirable properties that limit its information
content in some use cases. We will highlight and contrast
these properties with the ones of our proposed metric.

In the following, we introduce System Neural Diversity
(SND), a diversity metric that maps a behavioral distance
matrix to a single diversity value. SND takes inspiration from
the Gini coefficient (45) used in the field of economics. This
coefficient provides a measure of statistical dispersion and was
created to represent income inequality over a population. In a
similar way, we would like to represent diversity as behavioral
dispersion using distances d(i, j). Furthermore, we want to let
SND values range form zero to infinity. The proposed SND
takes the form:

SND(D) =
2

∑n

i=1
∑n

j=i+1 d(i, j)
n(n − 1) , [5]

where, due to the symmetry of D and the fact that its diagonal
is zero, we can consider only the upper right triangle of the
behavioral distance matrix during computation. SND can be
interpreted as the mean behavioral distance over unique pairs
of agents in the system.

We now introduce two key properties of SND which high-
light its complementary nature with respect to HSE.

Invariance in the Number of Equidistant Agents. When measuring
heterogeneity, a core question could be raised: “If in a sys-
tem with two agents at behavioral distance x we add a third
agent, also at distance x from the other two, does the system’s
heterogeneity increase?”. While HSE answers positively, SND
provides a negative answer. This is because, aligning with
the economical interpretation of the Gini coefficient, SND
considers diversity as the behavioral dispersion of the system.
Maximum dispersion is independent from the number of indi-
viduals considered. We refer to this property as invariance in
the number of equidistant agents.

Fig. 4. Invariance in the number of equidistant agents. Agents (circles) at behavioral
distance x are represented in behavioral space for n = 2, 3, 4. The reported values
of SND and HSE show that SND remains invariant in the number of equidistant agents,
while HSE increases.

Table 1. Invariance in the number of equidistant agents in the Multi-
Agent Goal Navigation scenario. We experimentally show that SND is
invariant to the increasing addition of new agents to the system, while
HSE grows. We report mean and standard deviation over 4 random
seeds for each n. The values are collected after 300 training iterations
each performed over 600 episodes of experience.

n 2 3 4 5 6 7 8

SND
1.51
±0.14

1.46
±0.11

1.43
±0.07

1.45
±0.06

1.42
±0.06

1.44
±0.06

1.43
±0.05

HSE
1.51
±0.14

2.50
±0.18

3.17
±0.23

3.86
±0.21

4.32
±0.24

4.77
±0.31

5.21
±0.29

Property 1 (Invariance in the number of equidistant agents
Fig. 4). Given a behavioral distance matrix D, where d(i, j) =
x, ∀i, j ∈ N with i ̸= j, representing a system with all agents
at behavioral distance x from each other, SND(D) is invariant
with respect to the number of agents n in the system.

Proof. Given that d(i, j) = x, ∀i, j ∈ N with i ̸= j, we can
write

∑n

i=1
∑n

j=i+1 d(i, j) = x n(n−1)
2 . Substituting in SND

we get SND(D) = 2n(n−1)x
2n(n−1) = x which is not dependent on n.

Fig. 4 depicts this property by showing the SND and HSE
values for n = 2, 3, 4. The desirability of this property may
depend on the use case. Nevertheless, it highlights how SND
provides a complementary and additional tool to HSE when
measuring diversity.
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To showcase the property experimentally, we implement
HSE (using our Wasserstein behavioral distance to account
for stochastic policies) and run experiments in the n goals
multi-agent navigation scenario (Fig. 2) with increasing values
of n. Tab. 1 shows that SND value remains invariant to the
increasing addition of new agents with new goals, while HSE
grows.

A Measure of Behavioral Redundancy. In heterogeneous systems
multiple agents might specialize in the same core skill in
order to provide redundancy. For example, if we consider a
population survival scenario, some agents may be required to
forage food, while others may need to stay static and monitor
an area. In games like football, agents may distribute between
defenders and attackers. In any of these cases, redundancy in
the number of agents with the same role may provides resilience
in the event of unmodeled disruptions. While it seems intuitive
that behavioral redundancy should lead to a decrease in system
diversity, this aspect is not captured in HSE. HSE clusters 0-
homogeneous agents together and then computes the Shannon
entropy over the population distribution in the behavioral
clusters. Thus, if nc behavioral clusters are present, with n

nc

agents at distance 0 from each other in each of them, HSE will
not depend on n, and thus not measure behavioral redundancy.
On the other hand, SND is able to measure redundancy.

Property 2 (Redundancy measure Fig. 5). Given a behavioral
distance matrix D, where n agents are divided equally in nc

behavioral clusters C = {C1, . . . , Cnc } with |Ch| = n
nc

∈ N>0,
∀Ch ∈ C, c(i) : N 7→ C is a function mapping each agent to its
cluster, and

d(i, j) =
{

0 if c(i) = c(j)
x otherwise ,

SND is a monotonically decreasing function of n and a mono-
tonically increasing function of nc, and it takes the form

SND(D) = x
n(nc − 1)
nc(n − 1) .

Proof. Given that the n agents are equally distributed in
nc behaviorally equidistant clusters,

∑n

i=1
∑n

j=i+1 d(i, j) can
be rewritten as x n2

n2
c

nc(nc−1)
2 . Meaning that each pair of

agents from two different clusters ( n2

n2
c
) is at distance x for

each unique pair of clusters ( nc(nc−1)
2 ). Simplifying, we get∑n

i=1
∑n

j=i+1 d(i, j) = xn2(nc−1)
2nc

. Substituting in SND we
get SND(D) = 2xn2(nc−1)

2ncn(n−1) = x n(nc−1)
nc(n−1) , where n

n−1 is mono-
tonically decreasing function of n and nc−1

nc
is a monotonically

increasing function of nc.

In other words, if n agents are equally distributed in nc

behavioral clusters, SND will increase when nc is increased and
decrease when n is increased. Fig. 5 depicts this property by
showing the SND and HSE as a function of n for nc = 2, 3, 4.

To showcase the property experimentally, we modify the
Multi-Agent Goal Navigation scenario (Fig. 2) by fixing the
number of goals to 2, corresponding to two behavioral clusters
(nc = 2). We then run experiments with n = 2, 4, 6, 8 in which
the first half of the team is assigned to the first goal and the
second half to the other. Tab. 2 shows that the SND value
decreases with the number of agents, following the described

Fig. 5. Redundancy measure. Agents (circles) are divided into nc behavioral clusters
(circle stacks) at distance x in behavioral space for nc = 2, 3, 4. The reported
values show that, for each value of nc, SND decreases with n, while HSE is invariant
to n. Fig. 4 is a special case of this figure where n = nc.

Table 2. Redundancy measure in the Multi-Agent Goal Navigation sce-
nario with nc = 2. We experimentally show that while SND decreases
with the redundancy of agents in clusters, HSE slightly increases. We
report mean and standard deviation over 6 random seeds for each n.
The values are collected after 300 training iterations each performed
over 600 episodes of experience.

n 2 4 6 8

SND 1.49 ± 0.12 0.98 ± 0.09 0.85 ± 0.07 0.81 ± 0.06
HSE 1.49 ± 0.12 1.65 ± 0.17 1.76 ± 0.16 1.91 ± 0.16

function. On the other hand, HSE not only does not decrease,
but slightly increases, as agents with the same goal will be at
behavioral distance epsilon ϵ ≈ 0.

Evaluations

We are now interested in using the SND metric as an insight-
ful heterogeneity index during a MARL training phase. For
this, we run a series of experiments on various multi-robot
tasks. The simulation environments representing these tasks
are partly new implementations and partly adapted from exist-
ing environments in the VMAS benchmark set (16, 44). These
generally represent multi-robot coordination problems with
POMGs that require inter-agent communication to be solved.
We analyze two types of tasks: (1) static tasks where the
agents have to solve a problem that does not change through-
out training, and (2) dynamic tasks where the problem can
change throughout training due to unmodeled disruptions (i.e.
noise, external forces, adversaries, etc.).

Experimental Setup. Simulations are performed in the
VMAS (44) simulator. Agents are trained using the
(Het)GPPO model (16) with a fully-connected graph topology.
We refer to the non-communication version of (Het)GPPO
as Het(IPPO). Agent policies output a 2D continuous
action distribution for each observation. The distribution
is parameterized using two univariate Gaussians (one for
each dimension). Training is performed in RLlib (46) using
PyTorch (47) and a multi-agent implementation of the PPO
algorithm (48). The training parameters used are shown in
Tab. 3.

Static Tasks. We refer with the term static tasks to multi-agent
problems modeled by a fixed‡ POMG. This is the type of prob-

‡A POMG that does not vary throughout the learning process
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Table 3. Training parameters for all evaluations.

Training PPO

Batch size 60000 ϵ 0.2
Minibatch size 4096 γ 0.99
SDG Iterations 40 λ 0.9
# Workers 5 Entropy coeff 0
# Envs per worker 50 KL coeff 0.01
Learning rate 5e-5 KL target 0.01
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Fig. 6. SND in the Multi-Agent Goal Navigation scenario (Fig. 2). We can observe
that, while all setups reach the same reward, SND decreases as the agents share
more goals, until the system becomes homogeneous when all agents are sharing the
same goal. We report mean and standard deviation over 3 random seeds for each
experiment. The values are measured over 300 training iterations each performed
over 600 episodes of experience.

lem traditionally used to benchmark MARL algorithms (49).
In this section, we train agents on a set of static tasks that
benefit from behavioral diversity, and use SND to analyze the
impact of such diversity in the learning process.

Multi-Agent Goal Navigation. We run a set of evaluations in the
Multi-Agent Goal Navigation scenario described in the SND
section (Fig. 2). We consider n = 4 agents with an increasing
number of goals. This is the same setup used in Fig. 3. By
observing the reward, shown in Fig. 6a, we can note that all
agents converge to the maximum reward within the first 50
iterations. In Fig. 6b we report the SND measured through-
out training. We can observe that SND decreases with the
number of goals. This means that, as the number of goals
decreases, more agents will be assigned the same goal and
will thus develop more homogeneous navigation policies. In
particular, when the agents all share one goal, SND approaches
0. An SND value of 0 indicates that the agents are behaving
homogeneously. In such a case, the metric acts an important
diagnostic tool, suggesting that a homogeneous training strat-
egy should be preferred in order to benefit from parameter
sharing and increased sample efficiency. To demonstrate this,
we run an additional evaluation in the 1 goal setup, where
SND is approximately 0, indicating no diversity. We compare
homogeneous and heterogeneous training. In Fig. 7 we show
that both paradigms obtain the same performance, with the
homogeneous model being significantly more time-efficient.

Insight 1. An SND of 0 indicates that homogeneous training
should be preferred to benefit from sample efficiency.

Different Size Joint Passage. This task, shown in Fig. 8a, involves
two robots of different sizes (blue circles), connected by a rigid
linkage through two revolute joints. The team needs to cross a
passage while keeping the linkage parallel to it and then match
the desired goal position (green circles) on the other side. The
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Fig. 7. Comparison of homogeneous (IPPO) and heterogeneous (HetIPPO) training
in the Multi-Agent Goal Navigation scenario with 1 goal, where heterogeneous models
have been shown to have approximately 0 SND (Fig. 6b). In this case, we can observe
that homogeneous training should be preferred as a more time-efficient solution thanks
to its higher sample efficiency. We report mean and standard deviation over 3 random
seeds for each experiment. The values are measured over 300 training iterations
each performed over 600 episodes of experience.

passage is comprised of a bigger and a smaller gap, which
are spawned in a random position and order on the wall, but
always at the same distance between each other. The team is
spawned in a random order and position on the lower side with
the linkage always perpendicular to the passage. The goal is
spawned horizontally in a random position on the upper side.
Each agent observes and communicates its velocity, relative
position to each gap, and relative position to the goal center.
The relative positions and velocities to the other agents are
obtained through communication. The sizes of the agents
or of the gaps are not part of the observations. The reward
function is global and shared by the team. It is composed of
two convex terms: before the passage, the robots are rewarded
to keep the linkage parallel to the goal and to carry its center
to the center of the passage; after the passage, the robots are
rewarded for carrying it to the goal at the desired orientation.
Collisions are also penalized.

In Fig. 8b we show the training reward (proportional to the
percentage of episodes in each batch that complete the task).
The plotted reward shows that this task requires heteroge-
neous behavior to be solved. In fact, the homogeneous agents,
not being able to observe their physical differences, cannot
learn specialized roles, which would allow them to assign the
smaller agent to the smaller gap. Agents with homogeneous
policies never manage to cross the passage, being deterred
by unavoidable collisions. With the heterogeneous model, on
the other hand, each agent is able to learn a specialized role
and tackle the respective gap. This is confirmed by the SND
plot in Fig. 8c, where we can see that the agents behave het-
erogeneously throughout training. They start with a high
diversity that later converges to an SND of 1. This is due to
the fact that the diversity here lies in the initial rotation of
the joint (to align each agent with its gap) and the remaining
navigation part of the task can be done homogeneously. This
lets us make a key observation that diversity, in this case, is
needed only during the initial ‘assignment’ action sequence
that the agents take (to position themselves with respect to
the correct gap). Since the rest of the navigation task is homo-
geneous, the agents observe the same states as they would in a
homogeneous run, thus smoothing out their policy differences
through training.

Insight 2. An SND greater than 0, when heterogeneous
paradigms obtain higher rewards than homogeneous ones, in-
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Fig. 8. Evaluations on static tasks. Top row (left to right): Different Size Joint Passage scenario with reward and SND. Bottom row (left to right): Asymmetric Payload Joint
Passage scenario with reward and SND. These evaluations in static scenarios show that heterogeneity can grant performance improvements (top) and resilience improvements
(bottom paired with Fig. 9). We report mean and standard deviation over 3 random seeds for each experiment. Each training iteration is performed over 600 episodes of
experience.

dicates that heterogeneity enables performance.

Asymmetric Payload Joint Passage. In the previous task consid-
ered, agents were physically different. In this task, we run an
evaluation in a scenario where agents are physically identical
but are impacted in diverse ways by the environment. We
consider the task depicted in Fig. 8d. The setup of this task
is similar to the Different Size Joint Passage scenario, with
the difference that the robots are now physically identical, but
the linkage has an asymmetrically positioned payload (black
circle). The passage now is a single gap, located randomly
in the wall. The agents need to cross it while keeping the
linkage perpendicular to the wall and avoiding collisions. The
team and the goal are spawned in a random position, order,
and rotation on opposite sides of the passage. Each robot
observes and communicates its velocity, relative position to the
gap, relative position to the goal center and goal orientation.
The relative positions and velocities to the other agents are
obtained through communication. The reward is shared and
global and composed of two convex terms: before the passage,
the team is rewarded for keeping the linkage perpendicular
to the wall and moving towards the center of the gap. After
the passage, the team is rewarded for aligning with the goal
position and orientation.

By looking at the reward curve for this scenario in Fig. 8e,
we can observe that both heterogeneous and homogeneous
agents are able to solve the task and obtain the maximum
reward. This is because the homogeneous model is able to
infer the agent differences from physical observations through
a process called inferred behavioral typing (16) and thus learn a
single multi-behavioral policy conditioned of these differences.
In the heterogeneous model, on the other hand, two diverse
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Fig. 9. Performance degradation in the Asymmetric Payload Joint Passage scenario
in Fig. 8d in the presence of deployment noise. We apply uniform observation noise
U(−δ, δ) in the same units as the observations for 10 values of δ in the range
[0, 2]. For each δ we report the mean and standard deviation of the reward for 50
episodes (left) and perform a Welch’s unequal variances t-test (50) for the means of
the samples collected with the two models (right).

policies are learned, leading to a significant difference in SND
(Fig. 8f). This leads to the following question: “Given that
the two models achieve the same performance with different
diversity scores, what advantages, if any, does heterogeneity
offer in this scenario?”. To answer this question, we take the
frozen learned policies for both models and evaluate them
under increasing deployment noise. In other words, we inject
uniform observation noise at test time. The result, reported
in Fig. 9, shows that the heterogeneous model proves more
resilient to increasing noise§. From the p-values of a Welch’s
unequal variances t-test (50) we can observe that the perfor-

§Similar resilience results have been observed in (16) in various scenarios.
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Fig. 10. Evaluations on dynamic tasks. Top row (left to right): Flocking in Wind scenario with reward and SND. Bottom row (left to right): Dynamic Passage scenario with
reward and SND. These plots show the emergence of latent resilience for heterogeneous learning. Heterogeneous agents are able to acquire resilience skills when facing
a disturbance and utilize those skills in case the disturbance reappears. We report mean and standard deviation over 11 (wind) and 6 (passage) random seeds for each
experiment. Each training iteration is performed over 300 (wind) and 200 (passage) episodes of experience.

mance curves are statistically different. The low p-values for
high noise injections suggest that we fail to accept the null
hypothesis of the samples having the same mean.

Insight 3. An SND greater than 0, when homogeneous and
heterogeneous paradigms obtain the same reward, indicates
that heterogeneity enables resilience.

Dynamic Tasks. We use the term dynamic tasks to refer to
multi-agent problems modeled by a dynamic POMG (i.e.,
a POMG that can vary throughout execution). Modifica-
tions to the POMG could occur due to unmodeled external
disturbances such as noise, faults, or adversaries. These modi-
fications could disrupt the multi-agent system, which would
then need to undergo an adaptation process (e.g., changing
formation, communication topology, etc.) to regain perfor-
mance. We refer to the property of adaptation in the face
of a disruption as resilience (51). Heterogeneous training in
MARL has previously been shown to have resilience proper-
ties in numerous simulated and real-world scenarios (16). In
this section, we are interested in analyzing the adaptation of
a multi-agent team to a disruption during the training pro-
cess. In particular, we consider scenarios were such adaptation
requires heterogeneous behaviors, and study how resilience
relates to SND.

Flocking in Wind. Flocking is a long studied collective behav-
ior observable in birds. The core behavioral rules of flocking
were originally synthesized by Reynolds (52) and subsequently
applied to multi-robot teams (53). In this scenario, shown
in Fig. 10a, we consider a flock of n = 2 agents (blue circle
and blue triangle) in 2D space tasked with tracking a desired
velocity vector of 0.5 m/s directed North (top of the figure)

while keeping a desired distance of 1 m (dotted line between
the agents). The agents receive a shared global reward propor-
tional to the reduction in the errors from the reference velocity
and team distance every consecutive timestep. They are initial-
ized 1 m from each other in a random order and at a random
angle between [− π

8 , π
8 ], with zero aligned to West/East. They

take 2D velocity actions which result in the control forces
shown as blue lines. Each agent observes its velocity and
obtains the relative position and velocity from the other agent
through communication.

This scenario can undergo a disruption, which manifests
itself as an external wind force acting in the opposite direction
of the agents’ desired velocity. This results in the agents having
to exert a higher force to track a desired velocity. However, the
agents are physically different (see Fig. 10a): the triangular
agent has an aerodynamically shielding property, which means
that, if it flocks in front of the circular agent, it is able to deflect
wind and thus reduce the team energy expenditure. We model
the effect of this shielding on the circular agent as proportional
to its angular displacement ‘behind’ the triangular agent (in
the direction of wind), with its perceived wind force dipping
to 0 % in case of full alignment. Conversely, an alignment that
keeps the triangular agent behind or horizontal causes both of
them to be effected by the same maximum wind. The agents
receive a reward inversely proportional to the total perceived
wind, rewarding the team to minimize the total energy needed
for the task. This additional term is simply 0 in the base
(windless) version of the task.

In Fig. 10b and Fig. 10c we report the reward and SND,
respectively, both for heterogeneous and homogeneous models.
From iteration 0 to 100 no wind is present in the environ-
ment. Both models learn the optimal solution, which is to
flock northwards in the formation they are spawned in. This
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is because, at this stage, the team has no reason to prefer
one formation over the other, and changing formation would
require sacrifices in velocity-tracking performance. Further-
more, without wind, the robots cannot benefit from diversity,
and thus we observe the heterogeneous model behaving almost
homogeneously (SND ≤ 0.5).

When wind is added to the environment (iteration 100),
the team can now collect additional reward by reducing the
perceived wind. The homogeneous model, unable to observe
the physical difference of the agents, fails to perform wind
shielding and is constrained to employ the same policy for both
agents. On the other hand, the heterogeneous agents, being
able to learn diverse policies, learn that they can decrease
the wind impacting the team by diverging in behavior and
performing wind shielding. We can see that, during the time
window when wind is introduced (100-400), the heterogeneous
agents gradually adapt and increase their reward as well as
diversity. We then remove the wind (between iterations 400-
600), reverting the POMG to its initial form. The performance
of both paradigms is now the same as before the wind was
introduced, with one fundamental difference. The difference,
which cannot be perceived in the reward, is visible in the
SND. The heterogeneous agents have learned to keep the
wind shielding formation, and, since this does not have a
significant impact on the reward, they maintain this skill even
during times where it is not needed. We refer to this as latent
resilience.

The main advantage of this latent resilience is observed
when the wind is reintroduced (iteration 600). The hetero-
geneous agents are able to immediately obtain the maximum
reward thanks to the latent shielding skill learned from the
previous appearance of this disturbance. Furthermore, they
are able to do so with less diversity than before. This is be-
cause the agents have learned to act homogeneously in the
parts of the task that benefit from it, and thus find the opti-
mal trade-off between homogeneity and heterogeneity through
time (as already observed in Fig. 8c).

Insight 4. In cases where the task undergoes repeated dynamic
disruptions, SND is able to expose how heterogeneity allows
agents to learn and maintain latent skills for resilience.

Dynamic Passage. To further demonstrate how SND can act as
an indicator of the latent resilience properties in heterogeneous
agents, we analyze another dynamic task, shown in Fig. 10d.
This scenario is a dynamic version of the Different Size Joint
Passage scenario. In its base version, the two gaps in the
wall have the same size and can fit either of the agents. The
disturbance in this scenario occurs in the form of one of the
gaps narrowing enough to block the larger agent. During this
disturbance, the agents will need to perform a heterogeneous
task assignment that directs them to their suitable gaps.

Once again, we train heterogeneous and homogeneous mod-
els for this scenario. In Fig. 10e and Fig. 10f we report the
reward and SND, respectively. There is no disturbance through
iterations 0 to 100 (i.e., both gaps fit either agent), and thus
both paradigms learn to solve the task homogeneously. In
fact, the heterogeneous model presents a low diversity of 0.6.
At iteration 100, one of the gaps is reduced in size. With
this disruption, both models drop to a reward of 0.5, meaning
that the team passes the wall approximately 50% of the times.
This indicates that the agent-to-gap assignment performed

by the policies prior to the disruption followed a uniform ran-
dom distribution. During iterations 100-700, the homogeneous
model, unable to observe the physical differences of the agents,
cannot perform heterogeneous gap assignment, and thus is
only able to improve its performance slightly by leveraging
tricks such as fitting both agents through the same gap. On
the other hand, the heterogeneous agents learn two different
behavioral roles and thus are able to increase their reward and
SND until they restore the same performance observed prior
to the disturbance. At iteration 700, the gap is widened again,
restoring the task to its initial state. As in the wind scenario,
we see that both paradigms regain the original performance.
However, the high SND metric suggests that the heterogeneous
model has learned a latent resilient skill. This is confirmed
when the same disturbance is reintroduced again (iteration
900) – the performance of the heterogeneous agents remains
unaffected, while the homogeneous counterpart suffers the
same impairment as before.

Discussion

Behavioral diversity is a valuable skill in collective problems.
Multi-agent systems that allow agents to specialize and learn
unique (and potentially complementary) skills often demon-
strate superior resilience towards disturbances (16). In this
work, we presented a novel framework for measuring this het-
erogeneity with a System Neural Diversity (SND) metric. Our
metric is able to measure behavioral diversity among agents
with stochastic policies acting in a continuous state spaces.
We show, theoretically and empirically, that SND allows to
compare diversity across different system sizes and provides a
measure of behavioral redundancy. These are two key prop-
erties that prior work (e.g., HSE) overlook, thus representing
only a partial picture of system heterogeneity.

Our evaluations of the metric in a variety of multi-agent
tasks (didactic and realistic) with different system sizes and
different heterogeneity requirements establish the true repre-
sentational power of our metric. The insights we draw from
the various static and dynamic tasks point to the fact that
SND provides a means to observe latent properties developed
by a heterogeneous system during training. In our static tasks,
we show how our metric can act as a key diagnostic tool to
analyze heterogeneous systems. In particular, we derive three
insights from the comparison of SND with task reward. These
insights suggest that SND can inform on the effectiveness of
heterogeneous learning agents. In our dynamic tasks, where
the problem is affected by a repeated disturbance during train-
ing, we show that heterogeneous agents are first able to learn
specialized roles that allow them to cope with the disturbance,
and then retain these roles even when the disturbance is re-
moved. This is beneficial for the agents when the disturbance
reoccurs. SND allows a direct measurement of this latent re-
silience, while other proxies such as task performance (reward)
fail to.

Finally, while our evaluations suggest that heterogeneous
training is a powerful paradigm for multi-agent problems, we
caution that this may not always be the case. This is already
evident in the Multi-Agent Goal Navigation scenario when
all agents are tasked towards the same goal. Fig. 7 shows
that in this case, a homogeneous training offers an advantage
in sample efficiency while achieving the same performance.
Luckily, SND is able to measure the lack of heterogeneity in the
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task and can thus inform our choice (see Insight 1). However,
it is possible to construct other pathological scenarios where,
just like in nature (54), excessive role specialization within a
multi-agent system in fact becomes the cause of failure during
unforeseen changes. For instance, highly specialized agents
are not able to dynamically swap roles, and thus, without
behavioral redundancy, the system performance may suffer
from agent faults. SND can still play an important role in
such cases by aiding the analysis and regulation of a trade-off
between specialization and redundancy.
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