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Abstract

The field of Multi-Agent Reinforcement Learning (MARL) is currently facing a repro-
ducibility crisis. While solutions for standardized reporting have been proposed to address
the issue, we still lack a benchmarking tool that enables standardization and reproducibility,
while leveraging cutting-edge Reinforcement Learning (RL) implementations. In this paper,
we introduce BenchMARL, the first MARL training library created to enable standardized
benchmarking across different algorithms, models, and environments. BenchMARL uses
TorchRL as its backend, granting it high performance and maintained state-of-the-art im-
plementations while addressing the broad community of MARL PyTorch users. Its design
enables systematic configuration and reporting, thus allowing users to create and run com-
plex benchmarks from simple one-line inputs. BenchMARL is open-sourced on GitHub:
https://github.com/facebookresearch/BenchMARL.
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1 Introduction

The Multi-Agent Reinforcement Learning (MARL) community in PyTorch is evergrowing.
Despite this, there exists a persistent fragmentation of tools and standards in the field. The
PyTorch-backed TorchRL project (Bou et al., 2023) successfully addressed this issue in the
broader Reinforcement Learning (RL) domain, providing a state-of-the-art library adopted
by thousands of users. BenchMARL leverages TorchRL’s benefits by employing it as the
backend in a MARL training library created to enable reproducibility and benchmarking
across different MARL algorithms, models, and environments. Its mission is to present a
standardized interface that allows easy integration of new algorithms and environments to
provide a fair and systematic comparison with existing solutions. Its core design tenets
are: (1) Reproducibility, achieved via standardization of configuration; (2) Standardized
plotting and reporting, achieved by integrating with the statistically-rigorous tools proposed
by Gorsane et al. (2022) 1; (3) TorchRL backend, which grants high performance and state-
of-the-art RL implementations; (4) Experiment independence, achieved via an experiment

1. Based on the NeurIPS 21 Outasnding Paper by Agarwal et al. (2021)
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Figure 1: BenchMARL execution diagram. Users run benchmarks as sets of experiments,
where each experiment loads its components from the respective YAML configuration files.

class that is agnostic to the choices of algorithm, model, or task; (5) Easy integration of
new solutions, achieved via simple abstract interfaces.

Related work. The recent popularity of MARL has exacerbated the fragmentation of
shared community standards and tools, with new libraries being frequently introduced,
each one focusing on specific algorithms, environments, or models. Popular examples are
PyMARL (Samvelyan et al., 2019) and its extensions: PyMARL2 (Hu et al., 2021) and
EPyMARL (Papoudakis et al., 2021), which are limited to environments with discrete
action spaces. Furthermore, these libraries often implement algorithmic components from
scratch, without leveraging native and stable baselines from the single-agent RL community.
MARLlib (Hu et al., 2022) addresses this problem by basing on the RLlib framework (Liang
et al., 2018). However, RLlib presents significant limitations due to its aim of being agnostic
to the underlying learning framework, which causes it to lack core features for state-of-the-
art benchmarking, such as support for vectorized environments. This fragmentation of the
domain has recently led to a reproducibility crisis, highlighted by Gorsane et al. (2022).
While the authors propose a set of tools for results’ reporting, there is still the need for a
standardized library to run such benchmarks. BenchMARL’s mission is to provide such a
benchmarking library for MARL, integrating with the reporting tools proposed and using
TorchRL as an efficient, tried and tested backend.

2 BenchMARL

BenchMARL tackles its reproducibility goals via defining unifying abstractions over MARL
training components. Components are gathered into experiments that are agnostic of their
specific implementations. Structured configurations allow to easily run multiple experiments
to create a benchmark, making it possible for users to go directly from one-line inputs to
benchmarking plots. This process is depicted in Fig. 1. In the following, we illustrate the
components and features that enable this pipeline.

2.1 Components

BenchMARL has a few core components, which correspond to classes in the codebase. Each
component has a default YAML configuration in a dedicated directory. We now introduce
the core components of the library.
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Table 1: Algorithms in BenchMARL.

Name On/Off policy Actor-critic Full-observability in critic Action compatibility Probabilistic actor

MAPPO (Yu et al., 2021) On Yes Yes Continuous + Discrete Yes
IPPO (de Witt et al., 2020) On Yes No Continuous + Discrete Yes
MADDPG (Lowe et al., 2017) Off Yes Yes Continuous No
IDDPG Off Yes No Continuous No
MASAC Off Yes Yes Continuous + Discrete Yes
ISAC Off Yes No Continuous + Discrete Yes
QMIX (Rashid et al., 2018) Off No NA Discrete No
VDN (Sunehag et al., 2017) Off No NA Discrete No
IQL (Tan, 1993) Off No NA Discrete No

Table 2: Environments in BenchMARL.

Environment Tasks Cooperation Global state Reward function Action space Vectorized

VMAS (Bettini et al., 2022) 5 Cooperative + Competitive No Shared + Independent + Global Continuous + Discrete Yes
SMACv2 (Ellis et al., 2022) 15 Cooperative Yes Global Discrete No
MPE (Lowe et al., 2017) 8 Cooperative + Competitive Yes Shared + Independent + Global Continuous + Discrete No
SISL (Gupta et al., 2017) 2 Cooperative No Shared Continuous No

Experiment. An experiment is a training run in which an algorithm, a task, and a model
are fixed. Experiments are configured by passing these values alongside a seed and the
experiment hyperparameters. The experiment hyperparameters cover both on-policy and
off-policy algorithms, discrete and continuous actions, and probabilistic and deterministic
policies. An experiment can be launched from the command line or from a script.

Benchmark. A benchmark is a collection of experiments that can vary in task, algorithm,
or model. A benchmark shares the same hyperparameter configuration across all of its
experiments. Benchmarks allow to compare different MARL components in a standardized
way. A benchmark can be launched from the command line or from a script.

Algorithms. Algorithms are an ensemble of components (e.g., loss, replay buffer) that
determine the training strategy. In Table 1 we report and classify the algorithms available
in BenchMARL. We further provide novel implementations (MASAC, ISAC) based on the
SAC (Haarnoja et al., 2018) algorithm. All our algorithms have the option of sharing pa-
rameters among agent groups for policies and critics. Custom algorithms can be designed by
combining this choice with the algorithm and the model. For example, the HetGPPO (Bet-
tini et al., 2023) algorithm can be obtained by using MAPPO without parameter sharing
and with a Graph Neural Network (GNN) model for actor and critic.

Tasks. Tasks are scenarios from an environment which constitute the MARL challenge to
solve. In Table 2 we report the environments available in BenchMARL. These showcase
the variety of MARL paradigms compatible with the library (e.g., differing in cooperation,
reward sharing, action space). Importantly, BenchMARL supports vectorized environments,
allowing to scale simulation when using batched environments on GPU devices2.

Models. BenchMARL models are neural network blueprints designed to be used in multiple
MARL contexts. They can be instantiated in multiple ways. (1) Decentralized : when a
model is instantiated in a decentralized manner (e.g., a policy) it will compute a value for
each agent. (2) Centralized with global input : when a model is instantiated in centralized
mode with global input (e.g., a global critic) it will compute a shared value for a group of
agents. (3) Centralized with local input : like centralized with global input with the difference
that the value is computed from aggregating local inputs. Furthermore, in any of these

2. For more info, see Bettini et al. (2022).
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settings, it is possible to decide whether or not to share parameters among agents. Users
can decide which model to use for their critics and actors and are able to mix models as they
like. Currently BenchMARL supports Multi Layer Perceptron (MLP) and GNN models3.

2.2 Features

In the following, we present some of the core features that enable the libraries standardiza-
tion and reproducibility goals.

Documentation, tests, engineering. The library documentation can be found at this
url. We provide an extensive set of examples and notebooks in the dedicated GitHub folder
with the goal of showcasing the library’s main use-cases. Integration and unit tests are run
on all tasks and algorithms. These tests are executed in the continuous integration (CI)
and perform complete training iterations to check all components. Coverage is reported on
the at this url and is currently around 90%. The library is maintained by the authors and
the community with its backend maintained directly by the TorchRL project.

Reporting. The library is directly integrated with the reporting tools proposed by Agarwal
et al. (2021) and Gorsane et al. (2022). This allows users to avoid spending time crafting
dedicated plots while providing them with state-of-the-art tools. It is furtherly compatible
with all the loggers available in TorchRL (e.g., wandb (Biewald, 2020), tensorboard (Abadi
et al., 2015), csv) with additional support for saving and restoring experiments.

Configuring. A core reproducibility challenge resides in sharing experiment configurations.
To address this BenchMARL uses Hydra (Yadan, 2019), a project that allows to define
modular configuration trees in YAML files that can be overridden in many ways either
within scripts or in the command line. Such modularity in the configuration allows to run
complex benchmarks in one line by listing the desired algorithms, models, and tasks to
compare. Different execution backends can be used (e.g., sequential, parallel, slurm).

Extending. Each component in the library has an associated abstract class which defines
the minimal functionalities needed to implement a new instance. This makes it easy to
integrate custom algorithms, models, and tasks allowing to compare them against the wide
repository of already implemented ones. Our examples provide detailed illustrations on how
to create custom components to enable researchers to benchmark their own solutions.

Public benchmark results. As part of the effort for the standardization of MARL
benchmarking, we are fine-tuning and releasing hyperparameters and experiment results
for BenchMARL environments in public interactive notebooks . Towards this goal, we have
already run and published benchmarks for the VMAS environment (at this url). The results
are reported in Appendix A.

3 Conclusion

In this paper we present BenchMARL, the first TorchRL-backed MARL benchmarking li-
brary with the goal of enabling standardization and reproducibility. The MARL community
can take advantage of BenchMARL to easily compare and share MARL components, in-
creasing reproducibility in the field and reducing its costs. The library also provides an
easy-to-use tool for users approaching MARL for the first time.

3. Convolutional Neural Network (CNN) models are being integrated as well.
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(a) Sample efficiency curves.
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(b) Performance profile.
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Figure 2: Benchmark results over VMAS tasks (Navigation, Sampling, Balance). We report
the inter-quartile mean (IQM) with 95% stratified bootstrap confidence intervals over 3
random seeds for each experiment (see Gorsane et al. (2022) for more details on the reported
metrics). Details and references for the algorithms used are available in Table 1.
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Appendix A. Experiment results

In this section, we report the results for the benchmark run on VMAS tasks. For these
experiments, we ran all of the currently available algorithms in BenchMARL on the Nav-
igation, Sampling, and Balance tasks. Experiment results, aggregated over all tasks, are
reported in Fig. 2. An interactive version of these results is available at https://wandb.ai/
matteobettini/benchmarl-public/reports/VMAS-Benchmarks--Vmlldzo1NzI4MDA5, where
additional metrics can also be accessed. Individual task results are reported in Fig. 3.

All the algorithms, models, and tasks were run using the default BenchMARL configu-
ration https://github.com/facebookresearch/BenchMARL/tree/main/benchmarl/conf

from v0. The experiment hyperparameters are available in the fine tuned folder at https:
//github.com/facebookresearch/BenchMARL/tree/main/fine_tuned/vmas/conf.
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(a) Sampling task.
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(b) Sample efficiency curves.

(c) Navigation task.
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(d) Sample efficiency curves.

(e) Balance task.
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(f) Sample efficiency curves.

Figure 3: The sample efficiency curves for all BenchMARL algorithms over the three VMAS
tasks analyzed. We report the mean with 95% stratified bootstrap confidence intervals over
3 random seeds for each experiment (see Gorsane et al. (2022) for more details on the
reported metrics). Details and references for the algorithms used are available in Table 1.

Appendix B. Environments

In Fig. 4 we report the rendering for one example task for each of the environments cur-
rently available in BenchMARL. Details and references for all environments are available in
Table 2.
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(a) VMAS (b) SMACv2 (c) MPE (d) SISL

Figure 4: Environments in BenchMARL. This figure shows renderings from one example
task for each environment. Details and references for all environments are available in
Table 2.
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